Source code in vllm/beam_search.py
  instance-attribute  ¶
 beams: list[BeamSearchSequence] = [
    BeamSearchSequence(
        tokens=prompt_tokens,
        logprobs=[] if logprobs is None else list(logprobs),
        lora_request=lora_request,
        **kwargs,
    )
]
 
 __init__(
    prompt_tokens: list[int],
    lora_request: LoRARequest | None = None,
    logprobs: list[dict[int, Logprob]] | None = None,
    **kwargs,
)
Source code in vllm/beam_search.py
  dataclass  ¶
 The output of beam search. It contains the list of the best beam search sequences. The length of the list is equal to the beam width.
Source code in vllm/beam_search.py
   dataclass  ¶
 A sequence for beam search. It keeps track of the tokens and the log probability of the sequence. The text field is optional and will only be filled when the sequence is about to be returned to the user.
Source code in vllm/beam_search.py
  class-attribute instance-attribute  ¶
   class-attribute instance-attribute  ¶
 multi_modal_data: Optional[MultiModalDataDict] = None
 
 __init__(
    tokens: list[int],
    logprobs: list[dict[int, Logprob]],
    lora_request: LoRARequest | None = None,
    cum_logprob: float = 0.0,
    text: str | None = None,
    finish_reason: str | None = None,
    stop_reason: int | str | None = None,
    multi_modal_data: Optional[MultiModalDataDict] = None,
    mm_processor_kwargs: dict[str, Any] | None = None,
) -> None
 
    
 get_beam_search_score(
    tokens: list[int],
    cumulative_logprob: float,
    eos_token_id: int,
    length_penalty: float = 1.0,
) -> float
Calculate the beam search score with length penalty.
Adapted from
https://github.com/huggingface/transformers/blob/ccb92be23def445f2afdea94c31286f84b89eb5b/src/transformers/generation/beam_search.py#L938