class SimpleBuffer(KVLookupBufferBase):
    def __init__(
        self, signal_pipe: KVPipeBase, data_pipe: KVPipeBase, buffer_size_thresh: float
    ):
        """
        signal_pipe: on CPU
        NOTE: on-device recv will block all threads in the process, making the
        KV cache producer unable to listen to new request while transmitting
        KV cache. Luckily CPU recv only blocks the current thread so we use
        CPU recv to listen to new request.
        data_pipe: on device (e.g. GPU)
        """
        self.buffer: deque[list[torch.Tensor]] = deque()
        self.buffer_size = 0
        self.buffer_size_threshold = buffer_size_thresh
        self.buffer_cv = threading.Condition()
        self.signal_pipe = signal_pipe
        self.data_pipe = data_pipe
        self.request_handling_thread: threading.Thread | None = None
        self.normal_signal = torch.tensor([0], device="cpu")
        self.end_signal = None
    def _matches(
        self,
        tokens_roi_sender: list[torch.Tensor],
        tokens_roi_recver: list[torch.Tensor],
    ):
        # tokens_roi_sender: tokens and roi of the producer (in the buffer)
        # tokens_roi_recver: tokens and roi of the consumer (query)
        tokens_sender = tokens_roi_sender[0]
        tokens_recver = tokens_roi_recver[0]
        roi_sender = tokens_roi_sender[1]
        roi_recver = tokens_roi_recver[1]
        if tokens_recver is None:
            # consumer sends an empty request
            # semantics: DROP SELECT * LIMIT 1
            # so any of the data in the buffer can be drop-selected
            return True
        # Assuming that roi is a binary mask on tokens
        tokens_sender = tokens_sender[roi_sender]
        tokens_recver = tokens_recver[roi_recver]
        # simple common prefix matching
        min_length = min(len(tokens_sender), len(tokens_recver))
        if torch.allclose(tokens_sender[:min_length], tokens_recver[:min_length]):
            return min_length
        return 0
    def _send_tensor_and_dec_size(self, tensor: torch.Tensor | None) -> None:
        assert tensor is not None, "Use self.data_pipe.send(None) instead"
        self.buffer_size -= tensor.element_size() * tensor.numel()
        if tensor.dtype == torch.bool:
            tensor = tensor.float()
        self.data_pipe.send_tensor(tensor)
    def _get_element_size(self, data: list | torch.Tensor | None):
        if isinstance(data, torch.Tensor):
            return data.element_size() * data.numel()
        if not data:
            # cannot perform `not data` on a tensor
            # so this check needs to go after the check above
            return 0
        raise AssertionError(f"Unknown data type {type(data)}")
    def _add_to_buffer(
        self,
        input_tokens: torch.Tensor,
        roi: torch.Tensor,
        key: torch.Tensor,
        value: torch.Tensor,
        hidden: torch.Tensor,
    ):
        if isinstance(input_tokens, torch.Tensor):
            input_tokens = input_tokens.clone()
        if isinstance(roi, torch.Tensor):
            roi = roi.clone()
        if isinstance(key, torch.Tensor):
            key = key.clone()
        if isinstance(value, torch.Tensor):
            value = value.clone()
        if isinstance(hidden, torch.Tensor):
            hidden = hidden.clone()
        buffer_item = [input_tokens, roi, key, value, hidden]
        data_size = sum([self._get_element_size(data) for data in buffer_item])
        with self.buffer_cv:
            if self.buffer_size + data_size > self.buffer_size_threshold:
                # log outside the while loop to avoid this message being logged
                # repeatedly.
                logger.debug("KV transfer buffer is full. Handling...")
                while self.buffer_size + data_size > self.buffer_size_threshold:
                    self.buffer_cv.wait()
            self.buffer_size += data_size
            self.buffer.append(buffer_item)
            self.buffer_cv.notify()
    def _is_end_signal(self, signal):
        return signal is None
    def drop_select_handler(self):
        try:
            while True:
                signal = self.signal_pipe.recv_tensor()
                if self._is_end_signal(signal):
                    logger.info("Received end signal!")
                    break
                input_tokens = self.data_pipe.recv_tensor()
                roi = self.data_pipe.recv_tensor()
                assert roi is not None, (
                    "Please provide the roi when sending drop-select request"
                )
                roi = roi > 0.5
                tokens_roi_recver = [input_tokens, roi]
                def is_buffer_available(
                    tokens_roi_recver: list[torch.Tensor],
                ) -> bool:
                    # perform input tokens and roi matching
                    # FIXME: this matching is O(n), ideally it should be O(1)
                    # but this buffer size won't (and shouldn't) be too large so
                    # the fix is not urgent.
                    for _ in range(len(self.buffer)):
                        if self._matches(self.buffer[0], tokens_roi_recver) > 0:
                            return True
                        # rotate the element we just accessed to the end
                        self.buffer.rotate(-1)
                    return False
                with self.buffer_cv:
                    while not is_buffer_available(tokens_roi_recver):
                        logger.debug("KV transfer buffer is not available. Waiting...")
                        self.buffer_cv.wait()
                    # need to clone the tensor
                    # in case the tensor is freed before sending finishes
                    matched_item = self.buffer.popleft()
                    for tensor in matched_item:
                        self._send_tensor_and_dec_size(tensor)
                    self.buffer_cv.notify()
        except RuntimeError as e:
            if "Connection closed by peer" not in str(e):
                raise e
        logger.debug("Closing drop_select_handler")
    def drop_select(
        self, input_tokens: torch.Tensor | None, roi: torch.Tensor | None
    ) -> list[torch.Tensor | None]:
        assert self.request_handling_thread is None, (
            "drop_select should be called by the KV cache consumer "
            "(e.g. the decode vLLM instance)"
        )
        if isinstance(input_tokens, torch.Tensor):
            input_tokens = input_tokens.clone()
        if isinstance(roi, torch.Tensor):
            roi = roi.clone().float()
        self.signal_pipe.send_tensor(self.normal_signal)
        self.data_pipe.send_tensor(input_tokens)
        self.data_pipe.send_tensor(roi)
        input_tokens = self.data_pipe.recv_tensor()
        roi = self.data_pipe.recv_tensor()
        if roi is not None:
            # convert from float tensor to bool tensor
            # as PyNccl does not support sending bool tensor
            roi = roi > 0.5
        key = self.data_pipe.recv_tensor()
        value = self.data_pipe.recv_tensor()
        hidden = self.data_pipe.recv_tensor()
        return [input_tokens, roi, key, value, hidden]
    def insert(
        self,
        input_tokens: torch.Tensor,
        roi: torch.Tensor,
        key: torch.Tensor,
        value: torch.Tensor,
        hidden: torch.Tensor,
    ) -> None:
        self._add_to_buffer(input_tokens, roi, key, value, hidden)
        # when calling the insert, the current process is a sender
        # need to launch the request handler and start listening to request.
        if self.request_handling_thread is None:
            self.request_handling_thread = threading.Thread(
                target=self.drop_select_handler
            )
            self.request_handling_thread.start()
    def close(self):
        if (
            hasattr(self, "request_handling_thread")
            and self.request_handling_thread is not None
        ):
            self.request_handling_thread.join()
        else:
            # TODO: have a explicit close signal and have a explicit way to
            # check if it's requester
            self.signal_pipe.send_tensor(self.end_signal)