class OpenAIServingChat(OpenAIServing):
    def __init__(
        self,
        engine_client: EngineClient,
        models: OpenAIServingModels,
        response_role: str,
        *,
        request_logger: RequestLogger | None,
        chat_template: str | None,
        chat_template_content_format: ChatTemplateContentFormatOption,
        trust_request_chat_template: bool = False,
        return_tokens_as_token_ids: bool = False,
        reasoning_parser: str = "",
        enable_auto_tools: bool = False,
        exclude_tools_when_tool_choice_none: bool = False,
        tool_parser: str | None = None,
        enable_prompt_tokens_details: bool = False,
        enable_force_include_usage: bool = False,
        enable_log_outputs: bool = False,
        log_error_stack: bool = False,
    ) -> None:
        super().__init__(
            engine_client=engine_client,
            models=models,
            request_logger=request_logger,
            return_tokens_as_token_ids=return_tokens_as_token_ids,
            log_error_stack=log_error_stack,
        )
        self.response_role = response_role
        self.chat_template = chat_template
        self.chat_template_content_format: Final = chat_template_content_format
        self.trust_request_chat_template = trust_request_chat_template
        self.enable_log_outputs = enable_log_outputs
        # set up reasoning parser
        self.reasoning_parser = self._get_reasoning_parser(
            reasoning_parser_name=reasoning_parser
        )
        # set up tool use
        self.enable_auto_tools: bool = enable_auto_tools
        self.tool_parser = self._get_tool_parser(
            tool_parser_name=tool_parser, enable_auto_tools=enable_auto_tools
        )
        self.exclude_tools_when_tool_choice_none = exclude_tools_when_tool_choice_none
        self.enable_prompt_tokens_details = enable_prompt_tokens_details
        self.enable_force_include_usage = enable_force_include_usage
        self.default_sampling_params = self.model_config.get_diff_sampling_param()
        if self.default_sampling_params:
            source = self.model_config.generation_config
            source = "model" if source == "auto" else source
            logger.info(
                "Using default chat sampling params from %s: %s",
                source,
                self.default_sampling_params,
            )
        if self.model_config.hf_config.model_type == "kimi_k2":
            self.tool_call_id_type = "kimi_k2"
        else:
            self.tool_call_id_type = "random"
        self.use_harmony = self.model_config.hf_config.model_type == "gpt_oss"
        if self.use_harmony:
            if "stop_token_ids" not in self.default_sampling_params:
                self.default_sampling_params["stop_token_ids"] = []
            self.default_sampling_params["stop_token_ids"].extend(
                get_stop_tokens_for_assistant_actions()
            )
        # NOTE(woosuk): While OpenAI's chat completion API supports browsing
        # for some models, currently vLLM doesn't support it. Please use the
        # Responses API instead.
        self.supports_browsing = False
        self.browser_tool = None
        # NOTE(woosuk): Chat completion API does not support code interpreter.
        # Please use the Responses API instead.
        self.supports_code_interpreter = False
        self.python_tool = None
    async def create_chat_completion(
        self,
        request: ChatCompletionRequest,
        raw_request: Request | None = None,
    ) -> AsyncGenerator[str, None] | ChatCompletionResponse | ErrorResponse:
        """
        Chat Completion API similar to OpenAI's API.
        See https://platform.openai.com/docs/api-reference/chat/create
        for the API specification. This API mimics the OpenAI
        Chat Completion API.
        """
        error_check_ret = await self._check_model(request)
        if error_check_ret is not None:
            logger.error("Error with model %s", error_check_ret)
            return error_check_ret
        # If the engine is dead, raise the engine's DEAD_ERROR.
        # This is required for the streaming case, where we return a
        # success status before we actually start generating text :).
        if self.engine_client.errored:
            raise self.engine_client.dead_error
        try:
            lora_request = self._maybe_get_adapters(
                request, supports_default_mm_loras=True
            )
            model_name = self.models.model_name(lora_request)
            tokenizer = await self.engine_client.get_tokenizer()
            tool_parser = self.tool_parser
            if isinstance(tokenizer, MistralTokenizer):
                # because of issues with pydantic we need to potentially
                # re-serialize the tool_calls field of the request
                # for more info: see comment in `maybe_serialize_tool_calls`
                maybe_serialize_tool_calls(request)
                truncate_tool_call_ids(request)
                validate_request_params(request)
            if (
                request.tool_choice == "auto"
                and not (self.enable_auto_tools and tool_parser is not None)
                and not isinstance(tokenizer, MistralTokenizer)
                and not self.use_harmony
            ):
                # for hf tokenizers, "auto" tools requires
                # --enable-auto-tool-choice and --tool-call-parser
                return self.create_error_response(
                    '"auto" tool choice requires '
                    "--enable-auto-tool-choice and --tool-call-parser to be set"
                )
            if request.tools is None or (
                request.tool_choice == "none"
                and self.exclude_tools_when_tool_choice_none
            ):
                tool_dicts = None
            else:
                tool_dicts = [tool.model_dump() for tool in request.tools]
            if not self.use_harmony:
                # Common case.
                error_check_ret = self._validate_chat_template(
                    request_chat_template=request.chat_template,
                    chat_template_kwargs=request.chat_template_kwargs,
                    trust_request_chat_template=self.trust_request_chat_template,
                )
                if error_check_ret is not None:
                    return error_check_ret
                (
                    conversation,
                    request_prompts,
                    engine_prompts,
                ) = await self._preprocess_chat(
                    request,
                    tokenizer,
                    request.messages,
                    chat_template=request.chat_template or self.chat_template,
                    chat_template_content_format=self.chat_template_content_format,
                    add_generation_prompt=request.add_generation_prompt,
                    continue_final_message=request.continue_final_message,
                    tool_dicts=tool_dicts,
                    documents=request.documents,
                    chat_template_kwargs=request.chat_template_kwargs,
                    tool_parser=tool_parser,
                    add_special_tokens=request.add_special_tokens,
                )
            else:
                # For GPT-OSS.
                (
                    conversation,
                    request_prompts,
                    engine_prompts,
                ) = self._make_request_with_harmony(request)
        except (ValueError, TypeError, RuntimeError, jinja2.TemplateError) as e:
            logger.exception("Error in preprocessing prompt inputs")
            return self.create_error_response(f"{e} {e.__cause__}")
        request_id = (
            f"chatcmpl-{self._base_request_id(raw_request, request.request_id)}"
        )
        request_metadata = RequestResponseMetadata(request_id=request_id)
        if raw_request:
            raw_request.state.request_metadata = request_metadata
        # Schedule the request and get the result generator.
        generators: list[AsyncGenerator[RequestOutput, None]] = []
        try:
            for i, engine_prompt in enumerate(engine_prompts):
                prompt_text, _, _ = self._get_prompt_components(request_prompts[i])
                if self.default_sampling_params is None:
                    self.default_sampling_params = {}
                max_tokens = get_max_tokens(
                    max_model_len=self.max_model_len,
                    request=request,
                    input_length=len(engine_prompt["prompt_token_ids"]),
                    default_sampling_params=self.default_sampling_params,
                )
                sampling_params: SamplingParams | BeamSearchParams
                if request.use_beam_search:
                    sampling_params = request.to_beam_search_params(
                        max_tokens, self.default_sampling_params
                    )
                else:
                    sampling_params = request.to_sampling_params(
                        max_tokens,
                        self.model_config.logits_processor_pattern,
                        self.default_sampling_params,
                    )
                self._log_inputs(
                    request_id,
                    request_prompts[i],
                    params=sampling_params,
                    lora_request=lora_request,
                )
                trace_headers = (
                    None
                    if raw_request is None
                    else await self._get_trace_headers(raw_request.headers)
                )
                if isinstance(sampling_params, BeamSearchParams):
                    generator = self.beam_search(
                        prompt=engine_prompt,
                        request_id=request_id,
                        params=sampling_params,
                        lora_request=lora_request,
                    )
                else:
                    engine_request, tokenization_kwargs = await self._process_inputs(
                        request_id,
                        engine_prompt,
                        sampling_params,
                        lora_request=lora_request,
                        trace_headers=trace_headers,
                        priority=request.priority,
                    )
                    generator = self.engine_client.generate(
                        engine_request,
                        sampling_params,
                        request_id,
                        lora_request=lora_request,
                        trace_headers=trace_headers,
                        priority=request.priority,
                        prompt_text=prompt_text,
                        tokenization_kwargs=tokenization_kwargs,
                    )
                generators.append(generator)
        except ValueError as e:
            # TODO: Use a vllm-specific Validation Error
            return self.create_error_response(str(e))
        assert len(generators) == 1
        (result_generator,) = generators
        # Streaming response
        if request.stream:
            return self.chat_completion_stream_generator(
                request,
                result_generator,
                request_id,
                model_name,
                conversation,
                tokenizer,
                request_metadata,
            )
        try:
            return await self.chat_completion_full_generator(
                request,
                result_generator,
                request_id,
                model_name,
                conversation,
                tokenizer,
                request_metadata,
            )
        except ValueError as e:
            # TODO: Use a vllm-specific Validation Error
            return self.create_error_response(str(e))
    def get_chat_request_role(self, request: ChatCompletionRequest) -> str:
        if request.add_generation_prompt:
            return self.response_role
        return request.messages[-1]["role"]
    @staticmethod
    def _bracket_level(s: str, opening="{", closing="}") -> int:
        """
        Calculate the current level of nested brackets in a given string.
        """
        level = 0
        for char in s:
            if char == opening:
                level += 1
            elif char == closing:
                level -= 1
        return level
    @staticmethod
    def _filter_delta_text(delta_text: str, previous_text: str) -> tuple[str, bool]:
        # remove last '},' of the tool definition stemming from the
        # "name"/"parameters" outer object or closing ']' of the tool list
        # count occurrences of opening and closing curly braces and
        # once level 0 is reached stop outputting text
        # if 0 is reached while parsing the delta_text we know the current
        # tool will finish in this current iteration
        bracket_level = OpenAIServingChat._bracket_level(previous_text)
        updated_delta, passed_zero = "", False
        for c in delta_text:
            if c == "{":
                bracket_level += 1
                passed_zero = bracket_level == 0
            elif c == "}":
                bracket_level -= 1
                passed_zero = bracket_level == 0
            if bracket_level != 0:
                updated_delta += c
            else:
                # if a comma is reached at level 0 we can stop
                if c == ",":
                    break
        return updated_delta, passed_zero
    def extract_tool_call_required_streaming(
        self,
        previous_text: str,
        current_text: str | None,
        delta_text: str,
        function_name_returned: bool,
        tool_call_idx: int | None = None,
    ) -> tuple[DeltaMessage | None, bool]:
        if current_text is None or current_text == "":
            # if the current text is empty, we cannot parse it
            return None, function_name_returned
        try:
            obj = partial_json_parser.loads(current_text)
        except partial_json_parser.core.exceptions.MalformedJSON:
            logger.debug("not enough tokens to parse into JSON yet")
            obj = None
        # check if the current text is a valid array
        # containing a partial tool calling object
        # if not repeat
        if obj is None or not isinstance(obj, list) or not len(obj) > 0:
            function_name_returned = False
            delta_message = None
        else:
            _, finishes_previous_tool = OpenAIServingChat._filter_delta_text(
                delta_text, previous_text
            )
            # take the last tool call from the generated list
            current_tool_call = obj[-1]
            # once parameters have been generated the name is complete as well
            if not finishes_previous_tool and (
                "name" not in current_tool_call or "parameters" not in current_tool_call
            ):
                function_name_returned = False
                delta_message = None
            else:
                if not function_name_returned:
                    # get partly generated arguments from the latest tool call
                    param_match = re.search(
                        r'.*"parameters":\s*(.*)', current_text, re.DOTALL
                    )
                    arguments = param_match.group(1) if param_match else ""
                    arguments, _ = OpenAIServingChat._filter_delta_text(
                        arguments, previous_text
                    )
                    # if this iteration finishes a previous tool call but a
                    # new incomplete tool is already generated, take the
                    # previous from the list
                    if finishes_previous_tool and "parameters" not in current_tool_call:
                        current_tool_call = obj[-2]
                    function_name_returned = True
                    tool_call_id = make_tool_call_id(
                        id_type=self.tool_call_id_type,
                        func_name=current_tool_call["name"],
                        idx=tool_call_idx,
                    )
                    delta_message = DeltaMessage(
                        tool_calls=[
                            DeltaToolCall(
                                id=tool_call_id,
                                function=DeltaFunctionCall(
                                    name=current_tool_call["name"], arguments=arguments
                                ),
                                index=len(obj) - 1,
                                type="function",
                            )
                        ]
                    )
                else:
                    delta_text, _ = OpenAIServingChat._filter_delta_text(
                        delta_text, previous_text
                    )
                    if delta_text != "":
                        delta_message = DeltaMessage(
                            tool_calls=[
                                DeltaToolCall(
                                    function=DeltaFunctionCall(
                                        # OpenAI API returns None
                                        # instead of name every time
                                        name=None,
                                        arguments=delta_text,
                                    ),
                                    index=len(obj) - 1,
                                )
                            ]
                        )
                    else:
                        delta_message = None
        return delta_message, function_name_returned
    async def chat_completion_stream_generator(
        self,
        request: ChatCompletionRequest,
        result_generator: AsyncIterator[RequestOutput],
        request_id: str,
        model_name: str,
        conversation: list[ConversationMessage],
        tokenizer: AnyTokenizer,
        request_metadata: RequestResponseMetadata,
    ) -> AsyncGenerator[str, None]:
        created_time = int(time.time())
        chunk_object_type: Final = "chat.completion.chunk"
        first_iteration = True
        # Send response for each token for each request.n (index)
        num_choices = 1 if request.n is None else request.n
        previous_num_tokens = [0] * num_choices
        finish_reason_sent = [False] * num_choices
        num_prompt_tokens = 0
        num_cached_tokens = None
        if self.use_harmony:
            harmony_parsers = [
                get_streamable_parser_for_assistant() for _ in range(num_choices)
            ]
            harmony_tools_streamed = [False] * num_choices
        tools_streamed = [False] * num_choices
        if isinstance(request.tool_choice, ChatCompletionNamedToolChoiceParam):
            tool_choice_function_name = request.tool_choice.function.name
        else:
            tool_choice_function_name = None
        # Determine whether tools are in use with "auto" tool choice
        tool_choice_auto = (
            not tool_choice_function_name
            and self._should_stream_with_auto_tool_parsing(request)
        )
        all_previous_token_ids: list[list[int]] | None
        function_name_returned = [False] * num_choices
        if self.tool_call_id_type == "kimi_k2":
            history_tool_call_cnt = get_history_tool_calls_cnt(conversation)
        else:
            history_tool_call_cnt = 0
        # Always track previous_texts for comprehensive output logging
        previous_texts = [""] * num_choices
        # Only one of these will be used, thus previous_texts and
        # all_previous_token_ids will not be used twice in the same iteration.
        if tool_choice_auto or self.reasoning_parser:
            # These are only required in "auto" tool choice case
            all_previous_token_ids = [[]] * num_choices
            # For reasoning parser and tool call all enabled
            added_content_delta_arr = [False] * num_choices
            reasoning_end_arr = [False] * num_choices
        else:
            all_previous_token_ids = None
        try:
            if self.reasoning_parser:
                reasoning_parser = self.reasoning_parser(
                    tokenizer,
                    chat_template_kwargs=request.chat_template_kwargs,  # type: ignore
                )
        except RuntimeError as e:
            logger.exception("Error in reasoning parser creation.")
            data = self.create_streaming_error_response(str(e))
            yield f"data: {data}\n\n"
            yield "data: [DONE]\n\n"
            return
        # Prepare the tool parser if it's needed
        try:
            if tool_choice_auto and self.tool_parser:
                tool_parsers: list[ToolParser | None] = [
                    self.tool_parser(tokenizer)
                ] * num_choices
            else:
                tool_parsers = [None] * num_choices
        except Exception as e:
            logger.exception("Error in tool parser creation.")
            data = self.create_streaming_error_response(str(e))
            yield f"data: {data}\n\n"
            yield "data: [DONE]\n\n"
            return
        stream_options = request.stream_options
        include_usage, include_continuous_usage = should_include_usage(
            stream_options, self.enable_force_include_usage
        )
        try:
            async for res in result_generator:
                if res.prompt_token_ids is not None:
                    num_prompt_tokens = len(res.prompt_token_ids)
                    if res.encoder_prompt_token_ids is not None:
                        num_prompt_tokens += len(res.encoder_prompt_token_ids)
                # We need to do it here, because if there are exceptions in
                # the result_generator, it needs to be sent as the FIRST
                # response (by the try...catch).
                if first_iteration:
                    num_cached_tokens = res.num_cached_tokens
                    # Send first response for each request.n (index) with
                    # the role
                    role = self.get_chat_request_role(request)
                    # NOTE num_choices defaults to 1 so this usually executes
                    # once per request
                    for i in range(num_choices):
                        choice_data = ChatCompletionResponseStreamChoice(
                            index=i,
                            delta=DeltaMessage(
                                role=role,
                                content="",
                            ),
                            logprobs=None,
                            finish_reason=None,
                        )
                        # return prompt_token_ids at the first chunk ever
                        chunk = ChatCompletionStreamResponse(
                            id=request_id,
                            object=chunk_object_type,
                            created=created_time,
                            choices=[choice_data],
                            model=model_name,
                            prompt_token_ids=(
                                res.prompt_token_ids
                                if request.return_token_ids
                                else None
                            ),
                        )
                        # if continuous usage stats are requested, add it
                        if include_continuous_usage:
                            chunk.usage = UsageInfo(
                                prompt_tokens=num_prompt_tokens,
                                completion_tokens=0,
                                total_tokens=num_prompt_tokens,
                            )
                        data = chunk.model_dump_json(exclude_unset=True)
                        yield f"data: {data}\n\n"
                    # Send response to echo the input portion of the
                    # last message
                    if request.echo:
                        last_msg_content: str | list[dict[str, str]] = ""
                        if (
                            conversation
                            and "content" in conversation[-1]
                            and conversation[-1].get("role") == role
                        ):
                            last_msg_content = conversation[-1]["content"] or ""
                        if last_msg_content:
                            for i in range(num_choices):
                                choice_data = ChatCompletionResponseStreamChoice(
                                    index=i,
                                    delta=DeltaMessage(content=last_msg_content),
                                    logprobs=None,
                                    finish_reason=None,
                                )
                                chunk = ChatCompletionStreamResponse(
                                    id=request_id,
                                    object=chunk_object_type,
                                    created=created_time,
                                    choices=[choice_data],
                                    model=model_name,
                                )
                                if include_continuous_usage:
                                    chunk.usage = UsageInfo(
                                        prompt_tokens=num_prompt_tokens,
                                        completion_tokens=0,
                                        total_tokens=num_prompt_tokens,
                                    )
                                data = chunk.model_dump_json(exclude_unset=True)
                                yield f"data: {data}\n\n"
                    first_iteration = False
                for output in res.outputs:
                    i = output.index
                    tool_parser = tool_parsers[i]
                    if finish_reason_sent[i]:
                        continue
                    if request.logprobs and request.top_logprobs is not None:
                        assert output.logprobs is not None, "Did not output logprobs"
                        logprobs = self._create_chat_logprobs(
                            token_ids=output.token_ids,
                            top_logprobs=output.logprobs,
                            tokenizer=tokenizer,
                            num_output_top_logprobs=request.top_logprobs,
                            return_as_token_id=request.return_tokens_as_token_ids,
                        )
                    else:
                        logprobs = None
                    if self.use_harmony:
                        harmony_parser = harmony_parsers[i]
                        prev_recipient = harmony_parser.current_recipient
                        delta_text = ""
                        for token_id in output.token_ids:
                            harmony_parser.process(token_id)
                            delta_text += harmony_parser.last_content_delta or ""
                        cur_channel = harmony_parser.current_channel
                        cur_recipient = harmony_parser.current_recipient
                    else:
                        delta_text = output.text
                    if (
                        not delta_text
                        and not output.token_ids
                        and not previous_num_tokens[i]
                    ):
                        # Chunked prefill case, don't return empty chunks
                        continue
                    delta_message: DeltaMessage | None
                    # just update previous_texts and previous_token_ids
                    if tool_choice_auto or self.reasoning_parser:
                        assert previous_texts is not None
                        assert all_previous_token_ids is not None
                        previous_text = previous_texts[i]
                        previous_token_ids = all_previous_token_ids[i]
                        current_text = previous_text + delta_text
                        # avoid the None + list error.
                        if previous_token_ids:
                            current_token_ids = previous_token_ids + as_list(
                                output.token_ids
                            )
                        else:
                            current_token_ids = as_list(output.token_ids)
                    if self.use_harmony:
                        if cur_channel == "final":
                            delta_message = DeltaMessage(content=delta_text)
                        elif cur_channel == "analysis":
                            if request.include_reasoning:
                                delta_message = DeltaMessage(
                                    reasoning_content=delta_text
                                )
                            else:
                                delta_message = None
                        elif (
                            cur_channel == "commentary"
                            and cur_recipient
                            and cur_recipient.startswith("functions.")
                        ):
                            # Count completed tool calls to determine index
                            base_index = 0
                            for msg in harmony_parser.messages:
                                if (
                                    msg.channel == "commentary"
                                    and msg.recipient
                                    and msg.recipient.startswith("functions.")
                                ):
                                    base_index += 1
                            if prev_recipient != cur_recipient:
                                tool_name = cur_recipient.split("functions.", 1)[1]
                                delta_message = DeltaMessage(
                                    tool_calls=[
                                        DeltaToolCall(
                                            id=make_tool_call_id(),
                                            type="function",
                                            function=DeltaFunctionCall(
                                                name=tool_name,
                                                arguments="",
                                            ),
                                            index=base_index,
                                        )
                                    ]
                                )
                            elif delta_text:
                                delta_message = DeltaMessage(
                                    tool_calls=[
                                        DeltaToolCall(
                                            index=base_index,
                                            function=DeltaFunctionCall(
                                                arguments=delta_text
                                            ),
                                        )
                                    ]
                                )
                            else:
                                delta_message = None
                            if delta_message is not None:
                                harmony_tools_streamed[i] = True
                        else:
                            delta_message = None
                    # handle streaming deltas for tools with named tool_choice
                    elif tool_choice_function_name:
                        if (
                            self.reasoning_parser
                            and not reasoning_end_arr[i]
                            and not reasoning_parser.is_reasoning_end(
                                previous_token_ids
                            )
                        ):
                            assert reasoning_parser is not None
                            delta_message = (
                                reasoning_parser.extract_reasoning_content_streaming(
                                    previous_text,
                                    current_text,
                                    delta_text,
                                    previous_token_ids,
                                    current_token_ids,
                                    output.token_ids,
                                )
                            )
                            # When encountering think end id in delta_token_ids
                            # or think end id in prompt_token_ids
                            # i.e {"enable_thinking": False},
                            # set reasoning status to end.
                            # Only keep 'content', remove 'reasoning_content'.
                            if reasoning_parser.is_reasoning_end(
                                as_list(output.token_ids)
                            ) or (
                                res.prompt_token_ids
                                and reasoning_parser.is_reasoning_end(
                                    res.prompt_token_ids
                                )
                            ):
                                reasoning_end_arr[i] = True
                                if delta_message and delta_message.content:
                                    # This need to be added to next `delta_text`
                                    current_text = delta_message.content
                                    delta_message.content = None
                                else:
                                    current_text = ""
                        else:
                            # Just to add remaining `content`
                            if self.reasoning_parser:
                                delta_text = previous_text + delta_text
                                current_text = ""
                            if function_name_returned[i]:
                                delta_tool_call = DeltaToolCall(
                                    function=DeltaFunctionCall(arguments=delta_text),
                                    index=i,
                                )
                            else:
                                delta_tool_call = DeltaToolCall(
                                    id=make_tool_call_id(),
                                    type="function",
                                    function=DeltaFunctionCall(
                                        name=tool_choice_function_name,
                                        arguments=delta_text,
                                    ),
                                    index=i,
                                )
                                function_name_returned[i] = True
                            delta_message = DeltaMessage(
                                tool_calls=[
                                    delta_tool_call,
                                ]
                            )
                            tools_streamed[i] = True
                    elif request.tool_choice == "required":
                        assert previous_texts is not None
                        previous_text = previous_texts[i]
                        current_text = previous_text + delta_text
                        fn_name_returned = function_name_returned[i]
                        output_token_ids = as_list(output.token_ids)
                        if (
                            self.reasoning_parser is not None
                            and not reasoning_end_arr[i]
                            and res.prompt_token_ids
                            and reasoning_parser.is_reasoning_end(res.prompt_token_ids)
                        ):
                            reasoning_end_arr[i] = True
                        if self.reasoning_parser and not reasoning_end_arr[i]:
                            delta_message = (
                                reasoning_parser.extract_reasoning_content_streaming(
                                    previous_text,
                                    current_text,
                                    delta_text,
                                    previous_token_ids,
                                    current_token_ids,
                                    output_token_ids,
                                )
                            )
                            if reasoning_parser.is_reasoning_end(output_token_ids):
                                reasoning_end_arr[i] = True
                                if delta_message and delta_message.content:
                                    current_text = delta_message.content
                                    delta_message.content = None
                                else:
                                    # reasoning ended
                                    current_text = ""
                        else:
                            # either finished reasoning or no reasoning at all
                            content = current_text
                            delta_message, function_name_returned[i] = (
                                self.extract_tool_call_required_streaming(
                                    previous_text=previous_text,
                                    current_text=content,
                                    delta_text=delta_text,
                                    function_name_returned=fn_name_returned,
                                    tool_call_idx=history_tool_call_cnt,
                                )
                            )
                            if (
                                delta_message
                                and delta_message.tool_calls
                                and delta_message.tool_calls[0].id is not None
                            ):
                                history_tool_call_cnt += 1
                                tools_streamed[i] = True
                    # handle streaming deltas for tools with "auto" tool choice
                    # and reasoning parser
                    elif tool_choice_auto and self.reasoning_parser:
                        assert tool_parser is not None
                        assert reasoning_parser is not None
                        assert added_content_delta_arr is not None
                        assert reasoning_end_arr is not None
                        output_token_ids = as_list(output.token_ids)
                        if not reasoning_end_arr[i]:
                            delta_message = (
                                reasoning_parser.extract_reasoning_content_streaming(
                                    previous_text,
                                    current_text,
                                    delta_text,
                                    previous_token_ids,
                                    current_token_ids,
                                    output_token_ids,
                                )
                            )
                            # When encountering think end id in prompt_token_ids
                            # i.e {"enable_thinking": False},
                            # set reasoning status to end.
                            # Remove the text and token ids related
                            # to 'reasoning_content'.
                            if (
                                res.prompt_token_ids
                                and reasoning_parser.is_reasoning_end(
                                    res.prompt_token_ids
                                )
                            ):
                                reasoning_end_arr[i] = True
                                current_token_ids = output_token_ids
                                if delta_message and delta_message.content:
                                    current_text = delta_message.content
                                    delta_message.content = None
                                else:
                                    current_text = ""
                            # When encountering think end id in delta_token_ids,
                            # set reasoning status to end.
                            # Remove the text and token ids related
                            # to 'reasoning_content'.
                            if reasoning_parser.is_reasoning_end(output_token_ids):
                                reasoning_end_arr[i] = True
                                current_token_ids = (
                                    reasoning_parser.extract_content_ids(
                                        output_token_ids
                                    )
                                )
                                if delta_message and delta_message.content:
                                    current_text = delta_message.content
                                    delta_message.content = None
                                else:
                                    current_text = ""
                        # handle tool calls only after reasoning is done,
                        else:
                            delta_token_ids = output_token_ids
                            # First time to tool call,
                            # add the remaining text and token ids
                            # to delta from previous
                            if not added_content_delta_arr[i]:
                                added_content_delta_arr[i] = True
                                previous_text = ""
                                previous_token_ids = []
                                delta_text = current_text
                                delta_token_ids = current_token_ids
                            delta_message = tool_parser.extract_tool_calls_streaming(
                                previous_text=previous_text,
                                current_text=current_text,
                                delta_text=delta_text,
                                previous_token_ids=previous_token_ids,
                                current_token_ids=current_token_ids,
                                delta_token_ids=delta_token_ids,
                                request=request,
                            )
                            if delta_message and delta_message.tool_calls:
                                tools_streamed[i] = True
                    # when only tool calls
                    elif tool_choice_auto:
                        assert tool_parser is not None
                        delta_message = tool_parser.extract_tool_calls_streaming(
                            previous_text=previous_text,
                            current_text=current_text,
                            delta_text=delta_text,
                            previous_token_ids=previous_token_ids,
                            current_token_ids=current_token_ids,
                            delta_token_ids=output.token_ids,
                            request=request,
                        )
                        if delta_message and delta_message.tool_calls:
                            tools_streamed[i] = True
                    # when only reasoning
                    elif self.reasoning_parser:
                        delta_message = (
                            reasoning_parser.extract_reasoning_content_streaming(
                                previous_text,
                                current_text,
                                delta_text,
                                previous_token_ids,
                                current_token_ids,
                                output.token_ids,
                            )
                        )
                    # handle streaming just a content delta
                    else:
                        delta_message = DeltaMessage(content=delta_text)
                    # update the previous values for the next iteration
                    if (
                        tool_choice_auto or self.reasoning_parser
                    ) and not self.use_harmony:
                        assert previous_texts is not None
                        assert all_previous_token_ids is not None
                        previous_texts[i] = current_text
                        all_previous_token_ids[i] = current_token_ids
                    else:
                        # Update for comprehensive logging even in simple case
                        assert previous_texts is not None
                        previous_texts[i] += delta_text
                    # set the previous values for the next iteration
                    previous_num_tokens[i] += len(output.token_ids)
                    # if the message delta is None (e.g. because it was a
                    # "control token" for tool calls or the parser otherwise
                    # wasn't ready to send a token, then
                    #   get the next token without streaming a chunk
                    if delta_message is None:
                        if output.finish_reason is None:
                            continue
                        else:
                            delta_message = DeltaMessage()
                    # Log streaming delta if output logging is enabled
                    if self.enable_log_outputs and self.request_logger:
                        delta_content = ""
                        if delta_message.content:
                            delta_content = delta_message.content
                        elif delta_message.tool_calls:
                            delta_content = "".join(
                                tc.function.arguments
                                for tc in delta_message.tool_calls
                                if tc.function and tc.function.arguments
                            )
                        if delta_content:
                            self.request_logger.log_outputs(
                                request_id=request_id,
                                outputs=delta_content,
                                output_token_ids=as_list(output.token_ids),
                                finish_reason=output.finish_reason,
                                is_streaming=True,
                                delta=True,
                            )
                    if output.finish_reason is None:
                        # Send token-by-token response for each request.n
                        choice_data = ChatCompletionResponseStreamChoice(
                            index=i,
                            delta=delta_message,
                            logprobs=logprobs,
                            finish_reason=None,
                            token_ids=(
                                as_list(output.token_ids)
                                if request.return_token_ids
                                else None
                            ),
                        )
                    # if the model is finished generating
                    else:
                        # check to make sure we haven't "forgotten" to stream
                        #   any tokens that were generated but previously
                        #   matched by partial json parsing
                        # only happens if we are NOT using structured outputs
                        auto_tools_called = False
                        if tool_parser:
                            auto_tools_called = len(tool_parser.prev_tool_call_arr) > 0
                            index = (
                                len(tool_parser.prev_tool_call_arr) - 1
                                if auto_tools_called
                                else 0
                            )
                        else:
                            index = 0
                        if (
                            self._should_check_for_unstreamed_tool_arg_tokens(
                                delta_message, output
                            )
                            and tool_parser
                        ):
                            latest_delta_len = 0
                            if (
                                isinstance(
                                    delta_message.tool_calls[0].function,
                                    DeltaFunctionCall,
                                )
                            ) and isinstance(
                                delta_message.tool_calls[0].function.arguments, str
                            ):
                                latest_delta_len = len(
                                    delta_message.tool_calls[0].function.arguments
                                )
                            # get the expected call based on partial JSON
                            # parsing which "autocompletes" the JSON
                            expected_call = json.dumps(
                                tool_parser.prev_tool_call_arr[index].get(
                                    "arguments", {}
                                ),
                                ensure_ascii=False,
                            )
                            # get what we've streamed so far for arguments
                            # for the current tool
                            actual_call = tool_parser.streamed_args_for_tool[index]
                            if latest_delta_len > 0:
                                actual_call = actual_call[:-latest_delta_len]
                            # check to see if there's anything left to stream
                            remaining_call = expected_call.replace(actual_call, "", 1)
                            # set that as a delta message
                            delta_message = DeltaMessage(
                                tool_calls=[
                                    DeltaToolCall(
                                        index=index,
                                        function=DeltaFunctionCall(
                                            arguments=remaining_call
                                        ).model_dump(exclude_none=True),
                                    )
                                ]
                            )
                        # Send the finish response for each request.n only once
                        if (
                            auto_tools_called
                            or tools_streamed[i]
                            or (self.use_harmony and harmony_tools_streamed[i])
                        ):
                            finish_reason_ = "tool_calls"
                        else:
                            finish_reason_ = (
                                output.finish_reason if output.finish_reason else "stop"
                            )
                        choice_data = ChatCompletionResponseStreamChoice(
                            index=i,
                            delta=delta_message,
                            logprobs=logprobs,
                            finish_reason=finish_reason_,
                            stop_reason=output.stop_reason,
                            token_ids=(
                                as_list(output.token_ids)
                                if request.return_token_ids
                                else None
                            ),
                        )
                        finish_reason_sent[i] = True
                    chunk = ChatCompletionStreamResponse(
                        id=request_id,
                        object=chunk_object_type,
                        created=created_time,
                        choices=[choice_data],
                        model=model_name,
                    )
                    # handle usage stats if requested & if continuous
                    if include_continuous_usage:
                        completion_tokens = previous_num_tokens[i]
                        chunk.usage = UsageInfo(
                            prompt_tokens=num_prompt_tokens,
                            completion_tokens=completion_tokens,
                            total_tokens=num_prompt_tokens + completion_tokens,
                        )
                    data = chunk.model_dump_json(exclude_unset=True)
                    yield f"data: {data}\n\n"
            # once the final token is handled, if stream_options.include_usage
            # is sent, send the usage
            if include_usage:
                completion_tokens = sum(previous_num_tokens)
                final_usage = UsageInfo(
                    prompt_tokens=num_prompt_tokens,
                    completion_tokens=completion_tokens,
                    total_tokens=num_prompt_tokens + completion_tokens,
                )
                if self.enable_prompt_tokens_details and num_cached_tokens:
                    final_usage.prompt_tokens_details = PromptTokenUsageInfo(
                        cached_tokens=num_cached_tokens
                    )
                final_usage_chunk = ChatCompletionStreamResponse(
                    id=request_id,
                    object=chunk_object_type,
                    created=created_time,
                    choices=[],
                    model=model_name,
                    usage=final_usage,
                )
                final_usage_data = final_usage_chunk.model_dump_json(
                    exclude_unset=True, exclude_none=True
                )
                yield f"data: {final_usage_data}\n\n"
            # report to FastAPI middleware aggregate usage across all choices
            num_completion_tokens = sum(previous_num_tokens)
            request_metadata.final_usage_info = UsageInfo(
                prompt_tokens=num_prompt_tokens,
                completion_tokens=num_completion_tokens,
                total_tokens=num_prompt_tokens + num_completion_tokens,
            )
            # Log complete streaming response if output logging is enabled
            if self.enable_log_outputs and self.request_logger:
                # Log the complete response for each choice
                for i in range(num_choices):
                    full_text = (
                        previous_texts[i]
                        if previous_texts and i < len(previous_texts)
                        else f"<streaming_complete: {previous_num_tokens[i]} tokens>"
                    )
                    self.request_logger.log_outputs(
                        request_id=request_id,
                        outputs=full_text,
                        output_token_ids=None,  # Consider also logging all token IDs
                        finish_reason="streaming_complete",
                        is_streaming=True,
                        delta=False,
                    )
        except Exception as e:
            # TODO: Use a vllm-specific Validation Error
            logger.exception("Error in chat completion stream generator.")
            data = self.create_streaming_error_response(str(e))
            yield f"data: {data}\n\n"
        # Send the final done message after all response.n are finished
        yield "data: [DONE]\n\n"
    async def chat_completion_full_generator(
        self,
        request: ChatCompletionRequest,
        result_generator: AsyncIterator[RequestOutput],
        request_id: str,
        model_name: str,
        conversation: list[ConversationMessage],
        tokenizer: AnyTokenizer,
        request_metadata: RequestResponseMetadata,
    ) -> ErrorResponse | ChatCompletionResponse:
        created_time = int(time.time())
        final_res: RequestOutput | None = None
        try:
            async for res in result_generator:
                final_res = res
        except asyncio.CancelledError:
            return self.create_error_response("Client disconnected")
        except ValueError as e:
            # TODO: Use a vllm-specific Validation Error
            return self.create_error_response(str(e))
        assert final_res is not None
        choices: list[ChatCompletionResponseChoice] = []
        if self.tool_call_id_type == "kimi_k2":
            history_tool_call_cnt = get_history_tool_calls_cnt(conversation)
        else:
            history_tool_call_cnt = 0
        role = self.get_chat_request_role(request)
        for output in final_res.outputs:
            token_ids = output.token_ids
            out_logprobs = output.logprobs
            tool_call_info = None
            if request.logprobs and request.top_logprobs is not None:
                assert out_logprobs is not None, "Did not output logprobs"
                logprobs = self._create_chat_logprobs(
                    token_ids=token_ids,
                    top_logprobs=out_logprobs,
                    num_output_top_logprobs=request.top_logprobs,
                    tokenizer=tokenizer,
                    return_as_token_id=request.return_tokens_as_token_ids,
                )
            else:
                logprobs = None
            if self.use_harmony:
                reasoning_content, content, _ = parse_chat_output(token_ids)
                if not request.include_reasoning:
                    reasoning_content = None
                if self.tool_parser is not None:
                    tool_parser = self.tool_parser(tokenizer)
                    # NOTE: We use token_ids for openai tool parser
                    tool_call_info = tool_parser.extract_tool_calls(
                        "",
                        request=request,
                        token_ids=token_ids,  # type: ignore
                    )
                    content = tool_call_info.content
                    message = ChatMessage(
                        role=role,
                        reasoning_content=reasoning_content,
                        content=content,
                        tool_calls=tool_call_info.tool_calls,
                    )
                else:
                    message = ChatMessage(
                        role=role,
                        reasoning_content=reasoning_content,
                        content=content,
                    )
                choice_data = ChatCompletionResponseChoice(
                    index=output.index,
                    message=message,
                    logprobs=logprobs,
                    finish_reason=(
                        "tool_calls"
                        if (tool_call_info is not None and tool_call_info.tools_called)
                        else output.finish_reason
                        if output.finish_reason
                        else "stop"
                    ),
                    stop_reason=output.stop_reason,
                )
                choices.append(choice_data)
                continue
            if self.reasoning_parser:
                try:
                    reasoning_parser = self.reasoning_parser(
                        tokenizer,
                        chat_template_kwargs=request.chat_template_kwargs,  # type: ignore
                    )
                except RuntimeError as e:
                    logger.exception("Error in reasoning parser creation.")
                    return self.create_error_response(str(e))
                # If the reasoning parser is enabled,
                # tool calls are extracted exclusively from the content.
                reasoning_content, content = reasoning_parser.extract_reasoning_content(
                    output.text, request=request
                )
                if not request.include_reasoning:
                    reasoning_content = None
            else:
                reasoning_content = None
                content = output.text
            auto_tools_called = False
            # if auto tools are not enabled, and a named tool choice using
            #   outlines is not being used
            if (not self.enable_auto_tools or not self.tool_parser) and (
                not isinstance(request.tool_choice, ChatCompletionNamedToolChoiceParam)
                and request.tool_choice != "required"
            ):
                message = ChatMessage(
                    role=role, reasoning_content=reasoning_content, content=content
                )
            # if the request uses tools and specified a tool choice
            elif (
                request.tool_choice
                and type(request.tool_choice) is ChatCompletionNamedToolChoiceParam
            ):
                tool_call_class = (
                    MistralToolCall
                    if isinstance(tokenizer, MistralTokenizer)
                    else ToolCall
                )
                message = ChatMessage(
                    role=role,
                    reasoning_content=reasoning_content,
                    content="",
                    tool_calls=[
                        tool_call_class(
                            function=FunctionCall(
                                name=request.tool_choice.function.name,
                                arguments=content,
                            )
                        )
                    ],
                )
            elif request.tool_choice and request.tool_choice == "required":
                tool_call_class = (
                    MistralToolCall
                    if isinstance(tokenizer, MistralTokenizer)
                    else ToolCall
                )
                # the fields of FunctionDefinition are a superset of the
                # tool call outputs and can be used for parsing
                assert content is not None
                tool_calls = TypeAdapter(list[FunctionDefinition]).validate_json(
                    content
                )
                tool_call_ids = []
                for tool_call in tool_calls:
                    tool_call_ids.append(
                        make_tool_call_id(
                            id_type=self.tool_call_id_type,
                            func_name=tool_call.name,
                            idx=history_tool_call_cnt,
                        )
                    )
                    history_tool_call_cnt += 1
                message = ChatMessage(
                    role=role,
                    content="",
                    tool_calls=[
                        tool_call_class(
                            id=tool_call_ids[i],
                            function=FunctionCall(
                                name=tool_call.name,
                                arguments=json.dumps(
                                    tool_call.parameters, ensure_ascii=False
                                ),
                            ),
                        )
                        for i, tool_call in enumerate(tool_calls)
                    ],
                    reasoning_content=reasoning_content,
                )
            # if the request doesn't use tool choice
            # OR specifies to not use a tool
            elif not request.tool_choice or request.tool_choice == "none":
                message = ChatMessage(
                    role=role, reasoning_content=reasoning_content, content=content
                )
            # handle when there are tools and tool choice is auto
            elif (
                request.tools
                and (request.tool_choice == "auto" or request.tool_choice is None)
                and self.enable_auto_tools
                and self.tool_parser
            ):
                try:
                    tool_parser = self.tool_parser(tokenizer)
                except RuntimeError as e:
                    logger.exception("Error in tool parser creation.")
                    return self.create_error_response(str(e))
                tool_call_info = tool_parser.extract_tool_calls(
                    content if content is not None else "", request=request
                )
                # In the OpenAI API the finish_reason is "tools_called"
                # if the tool choice is auto and the model produced a tool
                # call. The same is not true for named function calls
                auto_tools_called = tool_call_info.tools_called
                if tool_call_info.tools_called:
                    message = ChatMessage(
                        role=role,
                        reasoning_content=reasoning_content,
                        content=tool_call_info.content,
                        tool_calls=tool_call_info.tool_calls,
                    )
                else:
                    # FOR NOW make it a chat message; we will have to detect
                    # the type to make it later.
                    ret_content = content
                    # try to use content return from tool parser first,
                    # tool parser may do some modify for the content.
                    if tool_call_info.content and len(tool_call_info.content) > 0:
                        ret_content = tool_call_info.content
                    message = ChatMessage(
                        role=role,
                        reasoning_content=reasoning_content,
                        content=ret_content,
                    )
            # undetermined case that is still important to handle
            else:
                logger.error(
                    "Error in chat_completion_full_generator - cannot determine"
                    " if tools should be extracted. Returning a standard chat "
                    "completion."
                )
                message = ChatMessage(
                    role=role, reasoning_content=reasoning_content, content=content
                )
            choice_data = ChatCompletionResponseChoice(
                index=output.index,
                message=message,
                logprobs=logprobs,
                finish_reason=(
                    "tool_calls"
                    if auto_tools_called
                    else output.finish_reason
                    if output.finish_reason
                    else "stop"
                ),
                stop_reason=output.stop_reason,
                token_ids=(
                    as_list(output.token_ids) if request.return_token_ids else None
                ),
            )
            choices.append(choice_data)
        if request.echo:
            last_msg_content: str | list[dict[str, str]] = ""
            if (
                conversation
                and "content" in conversation[-1]
                and conversation[-1].get("role") == role
            ):
                last_msg_content = conversation[-1]["content"] or ""
            if isinstance(last_msg_content, list):
                last_msg_content = "\n".join(msg["text"] for msg in last_msg_content)
            for choice in choices:
                full_message = last_msg_content + (choice.message.content or "")
                choice.message.content = full_message
        assert final_res.prompt_token_ids is not None
        num_prompt_tokens = len(final_res.prompt_token_ids)
        if final_res.encoder_prompt_token_ids is not None:
            num_prompt_tokens += len(final_res.encoder_prompt_token_ids)
        num_generated_tokens = sum(
            len(output.token_ids) for output in final_res.outputs
        )
        usage = UsageInfo(
            prompt_tokens=num_prompt_tokens,
            completion_tokens=num_generated_tokens,
            total_tokens=num_prompt_tokens + num_generated_tokens,
        )
        if self.enable_prompt_tokens_details and final_res.num_cached_tokens:
            usage.prompt_tokens_details = PromptTokenUsageInfo(
                cached_tokens=final_res.num_cached_tokens
            )
        request_metadata.final_usage_info = usage
        response = ChatCompletionResponse(
            id=request_id,
            created=created_time,
            model=model_name,
            choices=choices,
            usage=usage,
            prompt_logprobs=clamp_prompt_logprobs(final_res.prompt_logprobs),
            prompt_token_ids=(
                final_res.prompt_token_ids if request.return_token_ids else None
            ),
            kv_transfer_params=final_res.kv_transfer_params,
        )
        # Log complete response if output logging is enabled
        if self.enable_log_outputs and self.request_logger:
            for choice in choices:
                output_text = ""
                if choice.message.content:
                    output_text = choice.message.content
                elif choice.message.tool_calls:
                    # For tool calls, log the function name and arguments
                    tool_call_descriptions = []
                    for tc in choice.message.tool_calls:
                        if hasattr(tc.function, "name") and hasattr(
                            tc.function, "arguments"
                        ):
                            tool_call_descriptions.append(
                                f"{tc.function.name}({tc.function.arguments})"
                            )
                    tool_calls_str = ", ".join(tool_call_descriptions)
                    output_text = f"[tool_calls: {tool_calls_str}]"
                if output_text:
                    # Get the corresponding output token IDs
                    output_token_ids = None
                    if choice.index < len(final_res.outputs):
                        output_token_ids = final_res.outputs[choice.index].token_ids
                    self.request_logger.log_outputs(
                        request_id=request_id,
                        outputs=output_text,
                        output_token_ids=output_token_ids,
                        finish_reason=choice.finish_reason,
                        is_streaming=False,
                        delta=False,
                    )
        return response
    def _get_top_logprobs(
        self,
        logprobs: dict[int, Logprob],
        top_logprobs: int | None,
        tokenizer: AnyTokenizer,
        should_return_as_token_id: bool,
    ) -> list[ChatCompletionLogProb]:
        return [
            ChatCompletionLogProb(
                token=(
                    token := self._get_decoded_token(
                        p[1],
                        p[0],
                        tokenizer,
                        return_as_token_id=should_return_as_token_id,
                    )
                ),
                logprob=max(p[1].logprob, -9999.0),
                bytes=list(token.encode("utf-8", errors="replace")),
            )
            for i, p in enumerate(logprobs.items())
            if (top_logprobs and i < top_logprobs or top_logprobs == -1)
        ]
    def _create_chat_logprobs(
        self,
        token_ids: GenericSequence[int],
        top_logprobs: GenericSequence[dict[int, Logprob] | None],
        tokenizer: AnyTokenizer,
        num_output_top_logprobs: int | None = None,
        return_as_token_id: bool | None = None,
    ) -> ChatCompletionLogProbs:
        """Create OpenAI-style logprobs."""
        logprobs_content: list[ChatCompletionLogProbsContent] = []
        should_return_as_token_id = (
            return_as_token_id
            if return_as_token_id is not None
            else self.return_tokens_as_token_ids
        )
        for i, token_id in enumerate(token_ids):
            step_top_logprobs = top_logprobs[i]
            if step_top_logprobs is None or step_top_logprobs.get(token_id) is None:
                if should_return_as_token_id:
                    token = f"token_id:{token_id}"
                else:
                    token = tokenizer.decode(token_id)
                logprobs_content.append(
                    ChatCompletionLogProbsContent(
                        token=token,
                        bytes=list(token.encode("utf-8", errors="replace")),
                    )
                )
            else:
                step_token = step_top_logprobs[token_id]
                step_decoded = step_token.decoded_token
                logprobs_content.append(
                    ChatCompletionLogProbsContent(
                        token=self._get_decoded_token(
                            step_token,
                            token_id,
                            tokenizer,
                            should_return_as_token_id,
                        ),
                        logprob=max(step_token.logprob, -9999.0),
                        bytes=(
                            None
                            if step_decoded is None
                            else list(step_decoded.encode("utf-8", errors="replace"))
                        ),
                        top_logprobs=self._get_top_logprobs(
                            step_top_logprobs,
                            num_output_top_logprobs,
                            tokenizer,
                            should_return_as_token_id,
                        ),
                    )
                )
        return ChatCompletionLogProbs(content=logprobs_content)
    def _should_stream_with_auto_tool_parsing(self, request: ChatCompletionRequest):
        """
        Utility function to check if streamed tokens should go through the tool
        call parser that was configured.
        We only want to do this IF user-provided tools are set, a tool parser
        is configured, "auto" tool choice is enabled, and the request's tool
        choice field indicates that "auto" tool choice should be used.
        """
        return (
            request.tools
            and self.tool_parser
            and self.enable_auto_tools
            and request.tool_choice in ["auto", None]
        )
    def _should_check_for_unstreamed_tool_arg_tokens(
        self,
        delta_message: DeltaMessage | None,
        output: CompletionOutput,
    ) -> bool:
        """
        Check to see if we should check for unstreamed tool arguments tokens.
        This is only applicable when auto tool parsing is enabled, the delta
        is a tool call with arguments.
        """
        return bool(
            # if there is a delta message that includes tool calls which
            # include a function that has arguments
            output.finish_reason is not None
            and self.enable_auto_tools
            and self.tool_parser
            and delta_message
            and delta_message.tool_calls
            and delta_message.tool_calls[0]
            and delta_message.tool_calls[0].function
            and delta_message.tool_calls[0].function.arguments is not None
        )
    def _make_request_with_harmony(
        self,
        request: ChatCompletionRequest,
    ):
        messages: list[OpenAIMessage] = []
        # Add system message.
        # NOTE: In Chat Completion API, browsing is enabled by default
        # if the model supports it. TODO: Support browsing.
        assert not self.supports_browsing
        assert not self.supports_code_interpreter
        sys_msg = get_system_message(
            reasoning_effort=request.reasoning_effort,
            browser_description=None,
            python_description=None,
            with_custom_tools=request.tools is not None,
        )
        messages.append(sys_msg)
        # Add developer message.
        dev_msg = get_developer_message(tools=request.tools)
        messages.append(dev_msg)
        # Add user message.
        for chat_msg in request.messages:
            messages.extend(parse_input_to_harmony_message(chat_msg))
        # Render prompt token ids.
        prompt_token_ids = render_for_completion(messages)
        engine_prompt = EngineTokensPrompt(prompt_token_ids=prompt_token_ids)
        # Add cache_salt if provided in the request
        if request.cache_salt is not None:
            engine_prompt["cache_salt"] = request.cache_salt
        return messages, [prompt_token_ids], [engine_prompt]