class OpenAIServingCompletion(OpenAIServing):
    def __init__(
        self,
        engine_client: EngineClient,
        models: OpenAIServingModels,
        *,
        request_logger: RequestLogger | None,
        return_tokens_as_token_ids: bool = False,
        enable_prompt_tokens_details: bool = False,
        enable_force_include_usage: bool = False,
        log_error_stack: bool = False,
    ):
        super().__init__(
            engine_client=engine_client,
            models=models,
            request_logger=request_logger,
            return_tokens_as_token_ids=return_tokens_as_token_ids,
            log_error_stack=log_error_stack,
        )
        self.enable_prompt_tokens_details = enable_prompt_tokens_details
        self.default_sampling_params = self.model_config.get_diff_sampling_param()
        self.enable_force_include_usage = enable_force_include_usage
        if self.default_sampling_params:
            source = self.model_config.generation_config
            source = "model" if source == "auto" else source
            logger.info(
                "Using default completion sampling params from %s: %s",
                source,
                self.default_sampling_params,
            )
    async def create_completion(
        self,
        request: CompletionRequest,
        raw_request: Request | None = None,
    ) -> AsyncGenerator[str, None] | CompletionResponse | ErrorResponse:
        """Completion API similar to OpenAI's API.
        See https://platform.openai.com/docs/api-reference/completions/create
        for the API specification. This API mimics the OpenAI Completion API.
        NOTE: Currently we do not support the following feature:
            - suffix (the language models we currently support do not support
            suffix)
        """
        error_check_ret = await self._check_model(request)
        if error_check_ret is not None:
            return error_check_ret
        # If the engine is dead, raise the engine's DEAD_ERROR.
        # This is required for the streaming case, where we return a
        # success status before we actually start generating text :).
        if self.engine_client.errored:
            raise self.engine_client.dead_error
        # Return error for unsupported features.
        if request.suffix is not None:
            return self.create_error_response("suffix is not currently supported")
        if request.echo and request.prompt_embeds is not None:
            return self.create_error_response("Echo is unsupported with prompt embeds.")
        if request.prompt_logprobs is not None and request.prompt_embeds is not None:
            return self.create_error_response(
                "prompt_logprobs is not compatible with prompt embeds."
            )
        request_id = f"cmpl-{self._base_request_id(raw_request, request.request_id)}"
        created_time = int(time.time())
        request_metadata = RequestResponseMetadata(request_id=request_id)
        if raw_request:
            raw_request.state.request_metadata = request_metadata
        try:
            lora_request = self._maybe_get_adapters(request)
            if self.model_config.skip_tokenizer_init:
                tokenizer = None
            else:
                tokenizer = await self.engine_client.get_tokenizer()
            renderer = self._get_renderer(tokenizer)
            engine_prompts = await renderer.render_prompt_and_embeds(
                prompt_or_prompts=request.prompt,
                prompt_embeds=request.prompt_embeds,
                config=self._build_render_config(request),
            )
        except ValueError as e:
            logger.exception("Error in preprocessing prompt inputs")
            return self.create_error_response(str(e))
        except TypeError as e:
            logger.exception("Error in preprocessing prompt inputs")
            return self.create_error_response(str(e))
        except RuntimeError as e:
            logger.exception("Error in preprocessing prompt inputs")
            return self.create_error_response(str(e))
        except jinja2.TemplateError as e:
            logger.exception("Error in preprocessing prompt inputs")
            return self.create_error_response(str(e))
        # Schedule the request and get the result generator.
        generators: list[AsyncGenerator[RequestOutput, None]] = []
        try:
            for i, engine_prompt in enumerate(engine_prompts):
                prompt_text, prompt_token_ids, prompt_embeds = (
                    self._get_prompt_components(engine_prompt)
                )
                input_length = None
                if prompt_token_ids is not None:
                    input_length = len(prompt_token_ids)
                elif prompt_embeds is not None:
                    input_length = len(prompt_embeds)
                else:
                    raise NotImplementedError
                if self.default_sampling_params is None:
                    self.default_sampling_params = {}
                max_tokens = get_max_tokens(
                    max_model_len=self.max_model_len,
                    request=request,
                    input_length=input_length,
                    default_sampling_params=self.default_sampling_params,
                )
                sampling_params: SamplingParams | BeamSearchParams
                if request.use_beam_search:
                    sampling_params = request.to_beam_search_params(
                        max_tokens, self.default_sampling_params
                    )
                else:
                    sampling_params = request.to_sampling_params(
                        max_tokens,
                        self.model_config.logits_processor_pattern,
                        self.default_sampling_params,
                    )
                request_id_item = f"{request_id}-{i}"
                self._log_inputs(
                    request_id_item,
                    engine_prompt,
                    params=sampling_params,
                    lora_request=lora_request,
                )
                trace_headers = (
                    None
                    if raw_request is None
                    else await self._get_trace_headers(raw_request.headers)
                )
                # Mypy inconsistently requires this second cast in different
                # environments. It shouldn't be necessary (redundant from above)
                # but pre-commit in CI fails without it.
                engine_prompt = cast(EmbedsPrompt | TokensPrompt, engine_prompt)
                if isinstance(sampling_params, BeamSearchParams):
                    generator = self.beam_search(
                        prompt=engine_prompt,
                        request_id=request_id,
                        params=sampling_params,
                        lora_request=lora_request,
                    )
                else:
                    engine_request, tokenization_kwargs = await self._process_inputs(
                        request_id_item,
                        engine_prompt,
                        sampling_params,
                        lora_request=lora_request,
                        trace_headers=trace_headers,
                        priority=request.priority,
                    )
                    generator = self.engine_client.generate(
                        engine_request,
                        sampling_params,
                        request_id_item,
                        lora_request=lora_request,
                        trace_headers=trace_headers,
                        priority=request.priority,
                        prompt_text=prompt_text,
                        tokenization_kwargs=tokenization_kwargs,
                    )
                generators.append(generator)
        except ValueError as e:
            # TODO: Use a vllm-specific Validation Error
            return self.create_error_response(str(e))
        result_generator = merge_async_iterators(*generators)
        model_name = self.models.model_name(lora_request)
        num_prompts = len(engine_prompts)
        # Similar to the OpenAI API, when n != best_of, we do not stream the
        # results. Noting that best_of is only supported in V0. In addition,
        # we do not stream the results when use beam search.
        stream = (
            request.stream
            and (request.best_of is None or request.n == request.best_of)
            and not request.use_beam_search
        )
        # Streaming response
        if stream:
            return self.completion_stream_generator(
                request,
                engine_prompts,
                result_generator,
                request_id,
                created_time,
                model_name,
                num_prompts=num_prompts,
                tokenizer=tokenizer,
                request_metadata=request_metadata,
            )
        # Non-streaming response
        final_res_batch: list[RequestOutput | None] = [None] * num_prompts
        try:
            async for i, res in result_generator:
                final_res_batch[i] = res
            for i, final_res in enumerate(final_res_batch):
                assert final_res is not None
                # The output should contain the input text
                # We did not pass it into vLLM engine to avoid being redundant
                # with the inputs token IDs
                if final_res.prompt is None:
                    engine_prompt = engine_prompts[i]
                    final_res.prompt = (
                        None
                        if is_embeds_prompt(engine_prompt)
                        else engine_prompt.get("prompt")
                    )
            final_res_batch_checked = cast(list[RequestOutput], final_res_batch)
            response = self.request_output_to_completion_response(
                final_res_batch_checked,
                request,
                request_id,
                created_time,
                model_name,
                tokenizer,
                request_metadata,
            )
        except asyncio.CancelledError:
            return self.create_error_response("Client disconnected")
        except ValueError as e:
            # TODO: Use a vllm-specific Validation Error
            return self.create_error_response(str(e))
        # When user requests streaming but we don't stream, we still need to
        # return a streaming response with a single event.
        if request.stream:
            response_json = response.model_dump_json()
            async def fake_stream_generator() -> AsyncGenerator[str, None]:
                yield f"data: {response_json}\n\n"
                yield "data: [DONE]\n\n"
            return fake_stream_generator()
        return response
    async def completion_stream_generator(
        self,
        request: CompletionRequest,
        engine_prompts: list[TokensPrompt | EmbedsPrompt],
        result_generator: AsyncIterator[tuple[int, RequestOutput]],
        request_id: str,
        created_time: int,
        model_name: str,
        num_prompts: int,
        tokenizer: AnyTokenizer,
        request_metadata: RequestResponseMetadata,
    ) -> AsyncGenerator[str, None]:
        num_choices = 1 if request.n is None else request.n
        previous_text_lens = [0] * num_choices * num_prompts
        previous_num_tokens = [0] * num_choices * num_prompts
        has_echoed = [False] * num_choices * num_prompts
        num_prompt_tokens = [0] * num_prompts
        num_cached_tokens = None
        first_iteration = True
        stream_options = request.stream_options
        include_usage, include_continuous_usage = should_include_usage(
            stream_options, self.enable_force_include_usage
        )
        try:
            async for prompt_idx, res in result_generator:
                prompt_token_ids = res.prompt_token_ids
                prompt_logprobs = res.prompt_logprobs
                if first_iteration:
                    num_cached_tokens = res.num_cached_tokens
                    first_iteration = False
                prompt_text = res.prompt
                if prompt_text is None:
                    engine_prompt = engine_prompts[prompt_idx]
                    prompt_text = (
                        None
                        if is_embeds_prompt(engine_prompt)
                        else engine_prompt.get("prompt")
                    )
                # Prompt details are excluded from later streamed outputs
                if prompt_token_ids is not None:
                    num_prompt_tokens[prompt_idx] = len(prompt_token_ids)
                delta_token_ids: GenericSequence[int]
                out_logprobs: GenericSequence[dict[int, Logprob] | None] | None
                for output in res.outputs:
                    i = output.index + prompt_idx * num_choices
                    # Useful when request.return_token_ids is True
                    # Returning prompt token IDs shares the same logic
                    # with the echo implementation.
                    prompt_token_ids_to_return: list[int] | None = None
                    assert request.max_tokens is not None
                    if request.echo and not has_echoed[i]:
                        assert prompt_token_ids is not None
                        if request.return_token_ids:
                            prompt_text = ""
                        assert prompt_text is not None
                        if request.max_tokens == 0:
                            # only return the prompt
                            delta_text = prompt_text
                            delta_token_ids = prompt_token_ids
                            out_logprobs = prompt_logprobs
                        else:
                            # echo the prompt and first token
                            delta_text = prompt_text + output.text
                            delta_token_ids = [
                                *prompt_token_ids,
                                *output.token_ids,
                            ]
                            out_logprobs = [
                                *(prompt_logprobs or []),
                                *(output.logprobs or []),
                            ]
                        prompt_token_ids_to_return = prompt_token_ids
                        has_echoed[i] = True
                    else:
                        # return just the delta
                        delta_text = output.text
                        delta_token_ids = output.token_ids
                        out_logprobs = output.logprobs
                        # has_echoed[i] is reused here to indicate whether
                        # we have already returned the prompt token IDs.
                        if not has_echoed[i] and request.return_token_ids:
                            prompt_token_ids_to_return = prompt_token_ids
                            has_echoed[i] = True
                        if (
                            not delta_text
                            and not delta_token_ids
                            and not previous_num_tokens[i]
                        ):
                            # Chunked prefill case, don't return empty chunks
                            continue
                    if request.logprobs is not None:
                        assert out_logprobs is not None, "Did not output logprobs"
                        logprobs = self._create_completion_logprobs(
                            token_ids=delta_token_ids,
                            top_logprobs=out_logprobs,
                            num_output_top_logprobs=request.logprobs,
                            tokenizer=tokenizer,
                            initial_text_offset=previous_text_lens[i],
                            return_as_token_id=request.return_tokens_as_token_ids,
                        )
                    else:
                        logprobs = None
                    previous_text_lens[i] += len(output.text)
                    previous_num_tokens[i] += len(output.token_ids)
                    finish_reason = output.finish_reason
                    stop_reason = output.stop_reason
                    chunk = CompletionStreamResponse(
                        id=request_id,
                        created=created_time,
                        model=model_name,
                        choices=[
                            CompletionResponseStreamChoice(
                                index=i,
                                text=delta_text,
                                logprobs=logprobs,
                                finish_reason=finish_reason,
                                stop_reason=stop_reason,
                                prompt_token_ids=prompt_token_ids_to_return,
                                token_ids=(
                                    as_list(output.token_ids)
                                    if request.return_token_ids
                                    else None
                                ),
                            )
                        ],
                    )
                    if include_continuous_usage:
                        prompt_tokens = num_prompt_tokens[prompt_idx]
                        completion_tokens = previous_num_tokens[i]
                        chunk.usage = UsageInfo(
                            prompt_tokens=prompt_tokens,
                            completion_tokens=completion_tokens,
                            total_tokens=prompt_tokens + completion_tokens,
                        )
                    response_json = chunk.model_dump_json(exclude_unset=False)
                    yield f"data: {response_json}\n\n"
            total_prompt_tokens = sum(num_prompt_tokens)
            total_completion_tokens = sum(previous_num_tokens)
            final_usage_info = UsageInfo(
                prompt_tokens=total_prompt_tokens,
                completion_tokens=total_completion_tokens,
                total_tokens=total_prompt_tokens + total_completion_tokens,
            )
            if self.enable_prompt_tokens_details and num_cached_tokens:
                final_usage_info.prompt_tokens_details = PromptTokenUsageInfo(
                    cached_tokens=num_cached_tokens
                )
            if include_usage:
                final_usage_chunk = CompletionStreamResponse(
                    id=request_id,
                    created=created_time,
                    model=model_name,
                    choices=[],
                    usage=final_usage_info,
                )
                final_usage_data = final_usage_chunk.model_dump_json(
                    exclude_unset=False, exclude_none=True
                )
                yield f"data: {final_usage_data}\n\n"
            # report to FastAPI middleware aggregate usage across all choices
            request_metadata.final_usage_info = final_usage_info
        except Exception as e:
            # TODO: Use a vllm-specific Validation Error
            data = self.create_streaming_error_response(str(e))
            yield f"data: {data}\n\n"
        yield "data: [DONE]\n\n"
    def request_output_to_completion_response(
        self,
        final_res_batch: list[RequestOutput],
        request: CompletionRequest,
        request_id: str,
        created_time: int,
        model_name: str,
        tokenizer: AnyTokenizer,
        request_metadata: RequestResponseMetadata,
    ) -> CompletionResponse:
        choices: list[CompletionResponseChoice] = []
        num_prompt_tokens = 0
        num_generated_tokens = 0
        kv_transfer_params = None
        last_final_res = None
        for final_res in final_res_batch:
            last_final_res = final_res
            prompt_token_ids = final_res.prompt_token_ids
            assert prompt_token_ids is not None
            prompt_logprobs = clamp_prompt_logprobs(final_res.prompt_logprobs)
            prompt_text = final_res.prompt
            token_ids: GenericSequence[int]
            out_logprobs: GenericSequence[dict[int, Logprob] | None] | None
            for output in final_res.outputs:
                assert request.max_tokens is not None
                if request.echo:
                    if request.return_token_ids:
                        prompt_text = ""
                    assert prompt_text is not None
                    if request.max_tokens == 0:
                        token_ids = prompt_token_ids
                        out_logprobs = prompt_logprobs
                        output_text = prompt_text
                    else:
                        token_ids = [*prompt_token_ids, *output.token_ids]
                        if request.logprobs is None:
                            out_logprobs = None
                        else:
                            assert prompt_logprobs is not None
                            assert output.logprobs is not None
                            out_logprobs = [
                                *prompt_logprobs,
                                *output.logprobs,
                            ]
                        output_text = prompt_text + output.text
                else:
                    token_ids = output.token_ids
                    out_logprobs = output.logprobs
                    output_text = output.text
                if request.logprobs is not None:
                    assert out_logprobs is not None, "Did not output logprobs"
                    logprobs = self._create_completion_logprobs(
                        token_ids=token_ids,
                        top_logprobs=out_logprobs,
                        tokenizer=tokenizer,
                        num_output_top_logprobs=request.logprobs,
                        return_as_token_id=request.return_tokens_as_token_ids,
                    )
                else:
                    logprobs = None
                choice_data = CompletionResponseChoice(
                    index=len(choices),
                    text=output_text,
                    logprobs=logprobs,
                    finish_reason=output.finish_reason,
                    stop_reason=output.stop_reason,
                    prompt_logprobs=final_res.prompt_logprobs,
                    prompt_token_ids=(
                        prompt_token_ids if request.return_token_ids else None
                    ),
                    token_ids=(
                        as_list(output.token_ids) if request.return_token_ids else None
                    ),
                )
                choices.append(choice_data)
                num_generated_tokens += len(output.token_ids)
            num_prompt_tokens += len(prompt_token_ids)
        usage = UsageInfo(
            prompt_tokens=num_prompt_tokens,
            completion_tokens=num_generated_tokens,
            total_tokens=num_prompt_tokens + num_generated_tokens,
        )
        if (
            self.enable_prompt_tokens_details
            and last_final_res
            and last_final_res.num_cached_tokens
        ):
            usage.prompt_tokens_details = PromptTokenUsageInfo(
                cached_tokens=last_final_res.num_cached_tokens
            )
        request_metadata.final_usage_info = usage
        if final_res_batch:
            kv_transfer_params = final_res_batch[0].kv_transfer_params
        return CompletionResponse(
            id=request_id,
            created=created_time,
            model=model_name,
            choices=choices,
            usage=usage,
            kv_transfer_params=kv_transfer_params,
        )
    def _create_completion_logprobs(
        self,
        token_ids: GenericSequence[int],
        top_logprobs: GenericSequence[dict[int, Logprob] | None],
        num_output_top_logprobs: int,
        tokenizer: AnyTokenizer,
        initial_text_offset: int = 0,
        return_as_token_id: bool | None = None,
    ) -> CompletionLogProbs:
        """Create logprobs for OpenAI Completion API."""
        out_text_offset: list[int] = []
        out_token_logprobs: list[float | None] = []
        out_tokens: list[str] = []
        out_top_logprobs: list[dict[str, float] | None] = []
        last_token_len = 0
        should_return_as_token_id = (
            return_as_token_id
            if return_as_token_id is not None
            else self.return_tokens_as_token_ids
        )
        for i, token_id in enumerate(token_ids):
            step_top_logprobs = top_logprobs[i]
            if step_top_logprobs is None:
                token = tokenizer.decode(token_id)
                if should_return_as_token_id:
                    token = f"token_id:{token_id}"
                out_tokens.append(token)
                out_token_logprobs.append(None)
                out_top_logprobs.append(None)
            else:
                step_token = step_top_logprobs[token_id]
                token = self._get_decoded_token(
                    step_token,
                    token_id,
                    tokenizer,
                    return_as_token_id=should_return_as_token_id,
                )
                token_logprob = max(step_token.logprob, -9999.0)
                out_tokens.append(token)
                out_token_logprobs.append(token_logprob)
                # makes sure to add the top num_output_top_logprobs + 1
                # logprobs, as defined in the openai API
                # (cf. https://github.com/openai/openai-openapi/blob/
                # 893ba52242dbd5387a97b96444ee1c742cfce9bd/openapi.yaml#L7153)
                out_top_logprobs.append(
                    {
                        # Convert float("-inf") to the
                        # JSON-serializable float that OpenAI uses
                        self._get_decoded_token(
                            top_lp[1],
                            top_lp[0],
                            tokenizer,
                            return_as_token_id=should_return_as_token_id,
                        ): max(top_lp[1].logprob, -9999.0)
                        for i, top_lp in enumerate(step_top_logprobs.items())
                        if num_output_top_logprobs >= i
                    }
                )
            if len(out_text_offset) == 0:
                out_text_offset.append(initial_text_offset)
            else:
                out_text_offset.append(out_text_offset[-1] + last_token_len)
            last_token_len = len(token)
        return CompletionLogProbs(
            text_offset=out_text_offset,
            token_logprobs=out_token_logprobs,
            tokens=out_tokens,
            top_logprobs=out_top_logprobs,
        )
    def _build_render_config(
        self,
        request: CompletionRequest,
        max_input_length: int | None = None,
    ) -> RenderConfig:
        max_input_tokens_len = self.max_model_len - (request.max_tokens or 0)
        return RenderConfig(
            max_length=max_input_tokens_len,
            truncate_prompt_tokens=request.truncate_prompt_tokens,
            add_special_tokens=request.add_special_tokens,
            cache_salt=request.cache_salt,
            needs_detokenization=bool(request.echo and not request.return_token_ids),
        )