class CustomOp(nn.Module):
    """
    Base class for custom ops.
    Dispatches the forward method to the appropriate backend.
    """
    def __new__(cls, *args, **kwargs):
        try:
            op_name = cls.__name__
        except AttributeError:
            raise TypeError(
                f"Cannot instantiate '{cls.__name__}': its 'name' attribute "
                f"was not set, possibly because it was not decorated with "
                f"@CustomOp.register, or it's the CustomOp base class itself."
            ) from None
        if op_name not in cls.op_registry_oot:
            op_cls_to_instantiate = cls
        else:
            op_cls_to_instantiate = cls.op_registry_oot[op_name]
            logger.debug(
                "Instantiating custom op: %s using %s",
                op_name,
                str(op_cls_to_instantiate),
            )
        return super().__new__(op_cls_to_instantiate)
    def __init__(self):
        super().__init__()
        self._forward_method = self.dispatch_forward()
    def forward(self, *args, **kwargs):
        return self._forward_method(*args, **kwargs)
    def forward_native(self, *args, **kwargs):
        """PyTorch-native implementation of the forward method.
        This method is optional. If implemented, it can be used with compilers
        such as torch.compile or PyTorch XLA. Also, it can be used for testing
        purposes.
        """
        raise NotImplementedError
    def forward_cuda(self, *args, **kwargs):
        raise NotImplementedError
    def forward_hip(self, *args, **kwargs):
        # By default, we assume that HIP ops are compatible with CUDA ops.
        return self.forward_cuda(*args, **kwargs)
    def forward_xpu(self, *args, **kwargs):
        # By default, we assume that XPU ops are compatible with the
        # PyTorch-native implementation.
        return self.forward_native(*args, **kwargs)
    def forward_cpu(self, *args, **kwargs):
        # By default, we assume that CPU ops are compatible with CUDA ops.
        return self.forward_cuda(*args, **kwargs)
    def forward_tpu(self, *args, **kwargs):
        # By default, we assume that TPU ops are compatible with the
        # PyTorch-native implementation.
        # NOTE(woosuk): This is a placeholder for future extensions.
        return self.forward_native(*args, **kwargs)
    def forward_oot(self, *args, **kwargs):
        # By default, we assume that OOT ops are compatible with the
        # PyTorch-native implementation.
        return self.forward_native(*args, **kwargs)
    def dispatch_forward(self):
        # NOTE(woosuk): Here we assume that vLLM was built for only one
        # specific backend. Currently, we do not support dynamic dispatching.
        compilation_config = get_cached_compilation_config()
        enabled = self.enabled()
        if enabled:
            compilation_config.enabled_custom_ops.update([self.__class__.name])
        else:
            compilation_config.disabled_custom_ops.update([self.__class__.name])
        if not enabled:
            return self.forward_native
        if current_platform.is_rocm():
            return self.forward_hip
        elif current_platform.is_cpu():
            return self.forward_cpu
        elif current_platform.is_tpu():
            return self.forward_tpu
        elif current_platform.is_xpu():
            return self.forward_xpu
        elif current_platform.is_out_of_tree():
            return self.forward_oot
        else:
            return self.forward_cuda
    @classmethod
    def enabled(cls) -> bool:
        # if no name, then it was not registered
        compilation_config = get_cached_compilation_config()
        custom_ops = compilation_config.custom_ops
        if not hasattr(cls, "name"):
            logger.warning_once(
                "Custom op %s was not registered, which means it won't appear "
                "in the op registry. It will be enabled/disabled based on the "
                "global settings.",
                cls.__name__,
            )
            return CustomOp.default_on()
        enabled = f"+{cls.name}" in custom_ops
        disabled = f"-{cls.name}" in custom_ops
        assert not (enabled and disabled), f"Cannot enable and disable {cls.name}"
        return (CustomOp.default_on() or enabled) and not disabled
    @staticmethod
    def default_on() -> bool:
        """
        Behavior controlled by `CompilationConfig.custom_ops`: On by default if
        'all', off by default if 'none'.
        When PyTorch Inductor is used, 'none' is the default value,
        otherwise 'all'.
        """
        compilation_config = get_cached_compilation_config()
        count_none = compilation_config.custom_ops.count("none")
        count_all = compilation_config.custom_ops.count("all")
        assert count_none + count_all == 1
        return not count_none > 0 or count_all > 0
    # Dictionary of all custom ops (classes, indexed by registered name).
    # To check if an op with a name is enabled, call .enabled() on the class.
    # Examples:
    # - MyOp.enabled()
    # - op_registry["my_op"].enabled()
    op_registry: dict[str, type["CustomOp"]] = {}
    op_registry_oot: dict[str, type["CustomOp"]] = {}
    # Decorator to register custom ops.
    @classmethod
    def register(cls, name: str):
        def decorator(op_cls):
            assert name not in cls.op_registry, f"Duplicate op name: {name}"
            op_cls.name = name
            cls.op_registry[name] = op_cls
            return op_cls
        return decorator
    # Decorator to register out-of-tree(oot) custom ops.
    # For OOT custom ops:
    #   if in-tree layer class is registered with an oot_custom_op layer,
    #   the oot_custom_op layer will be used instead.
    # Example:
    # - @UnquantizedFusedMoEMethod.register_oot
    #   class HPUUnquantizedFusedMoEMethod(UnquantizedFusedMoEMethod)
    # or
    # - @CustomOP.register_oot(name="UnquantizedFusedMoEMethod")
    @classmethod
    def register_oot(cls, _decorated_op_cls=None, name: str | None = None):
        def decorator(op_cls):
            reg_name = name if name is not None else cls.__name__
            assert reg_name not in cls.op_registry_oot, f"Duplicate op name: {reg_name}"
            op_cls.name = reg_name
            cls.op_registry_oot[reg_name] = op_cls
            return op_cls
        if _decorated_op_cls is None:
            # Called with parentheses: @CustomOP.register_oot()
            # or @CustomOP.register_oot(name="...")
            # So, _decorated_op_cls is None.
            # We return the actual decorator function.
            return decorator
        elif isinstance(_decorated_op_cls, type):  # Check if it's a class
            # Called without parentheses: @CustomOP.register_oot
            # The first argument is the class itself.
            # We call the 'decorator' function immediately with the class.
            return decorator(_decorated_op_cls)
        else:
            # Handle other unexpected cases if necessary
            raise TypeError("Decorator can only be applied to classes.")