class QuarkW8A8Int8(QuarkScheme):
    _kernel_backends_being_used: set[str] = set()
    def __init__(
        self,
        qscheme: str,
        is_static_input_scheme: bool | None,
        input_symmetric: bool | None,
    ):
        self.qscheme = qscheme
        self.is_static_input_scheme = is_static_input_scheme
        self.input_symmetric = input_symmetric
    @classmethod
    def get_min_capability(cls) -> int:
        # turing and up
        return 75
    def create_weights(
        self,
        layer: torch.nn.Module,
        output_partition_sizes: list[int],
        input_size_per_partition: int,
        params_dtype: torch.dtype,
        weight_loader: Callable,
        **kwargs,
    ):
        layer.logical_widths = output_partition_sizes
        scaled_mm_linear_kernel_config = ScaledMMLinearLayerConfig(
            is_channelwise=(self.qscheme == "per_channel"),
            is_static_input_scheme=(self.is_static_input_scheme is True),
            input_symmetric=(self.input_symmetric is True),
        )
        kernel_type = choose_scaled_mm_linear_kernel(scaled_mm_linear_kernel_config)
        if kernel_type.__name__ not in self._kernel_backends_being_used:
            logger.info("Using %s for QuarkW8A8Int8", kernel_type.__name__)
            self._kernel_backends_being_used.add(kernel_type.__name__)
        # WEIGHT
        weight = ModelWeightParameter(
            data=torch.empty(
                sum(output_partition_sizes), input_size_per_partition, dtype=torch.int8
            ),
            input_dim=1,
            output_dim=0,
            weight_loader=weight_loader,
        )
        layer.register_parameter("weight", weight)
        # WEIGHT SCALE
        if self.qscheme == "per_channel":
            weight_scale = ChannelQuantScaleParameter(
                data=torch.empty((sum(output_partition_sizes)), dtype=torch.float32),
                output_dim=0,
                weight_loader=weight_loader,
            )
            ChannelQuantZPParameter = ChannelQuantScaleParameter
            weight_zero_point = ChannelQuantZPParameter(
                data=torch.empty((sum(output_partition_sizes)), dtype=torch.int8),
                output_dim=0,
                weight_loader=weight_loader,
            )
        else:
            assert self.qscheme == "per_tensor"
            weight_scale = PerTensorScaleParameter(
                data=torch.empty(len(output_partition_sizes), dtype=torch.float32),
                weight_loader=weight_loader,
            )
            PerTensorZPParameter = PerTensorScaleParameter
            weight_zero_point = PerTensorZPParameter(
                data=torch.empty(len(output_partition_sizes), dtype=torch.int8),
                weight_loader=weight_loader,
            )
        layer.register_parameter("weight_scale", weight_scale)
        layer.register_parameter("weight_zero_point", weight_zero_point)
        # INPUT SCALE
        if self.is_static_input_scheme:
            input_scale = BasevLLMParameter(
                data=torch.empty(1, dtype=torch.float32), weight_loader=weight_loader
            )
            layer.register_parameter("input_scale", input_scale)
            input_zero_point = BasevLLMParameter(
                data=torch.empty(1, dtype=torch.int8), weight_loader=weight_loader
            )
            layer.register_parameter("input_zero_point", input_zero_point)
        self.kernel = kernel_type(
            c=scaled_mm_linear_kernel_config,
            w_q_param_name="weight",
            w_s_param_name="weight_scale",
            i_s_param_name="input_scale",
            i_zp_param_name="input_zero_point",
            azp_adj_param_name="azp_adj",
        )
    # Checkpoints are serialized in quark format, which is
    # different from the format the kernel may want. Handle repacking here.
    def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
        layer.register_parameter("weight_zero_point", None)
        delattr(layer, "weight_zero_point")
        if self.input_symmetric:
            layer.register_parameter("input_zero_point", None)
            delattr(layer, "input_zero_point")
        self.kernel.process_weights_after_loading(layer)
    def apply_weights(
        self, layer: torch.nn.Module, x: torch.Tensor, bias: torch.Tensor | None
    ) -> torch.Tensor:
        return self.kernel.apply_weights(layer, x, bias)