module-attribute  ¶
   module-attribute  ¶
   
 _check_bitblas_supported(
    quant_type: ScalarType,
    group_size: int | None,
    has_zp: bool,
    device_capability: int | None = None,
) -> tuple[bool, str | None]
Source code in vllm/model_executor/layers/quantization/utils/bitblas_utils.py
  
    
    
    
 bitblas_repeat_scales_on_all_ranks(
    act_order: bool, group_size: int, is_row_parallel: bool
) -> bool
Source code in vllm/model_executor/layers/quantization/utils/bitblas_utils.py
  
    
 check_bitblas_supported(
    quant_type: ScalarType,
    group_size: int,
    has_zp: bool = False,
    device_capability: int | None = None,
) -> bool
Source code in vllm/model_executor/layers/quantization/utils/bitblas_utils.py
   
 check_bitblas_supports_shape(
    output_size_per_partition: int,
    input_size_per_partition: int,
    input_size: int,
    group_size: int,
) -> tuple[bool, str | None]
Source code in vllm/model_executor/layers/quantization/utils/bitblas_utils.py
  
  Source code in vllm/model_executor/layers/quantization/utils/bitblas_utils.py
  
  Source code in vllm/model_executor/layers/quantization/utils/bitblas_utils.py
  
 unpack_gptq_qzeros(
    qzeros, bits, is_gptq_v2=False
) -> Tensor
Source code in vllm/model_executor/layers/quantization/utils/bitblas_utils.py
  
 verify_bitblas_supported(
    quant_type: ScalarType,
    group_size: int,
    has_zp: bool = False,
) -> None
Source code in vllm/model_executor/layers/quantization/utils/bitblas_utils.py
   
 verify_bitblas_supports_shape(
    output_size_per_partition: int,
    input_size_per_partition: int,
    input_size: int,
    group_size: int,
) -> None