def _quant_dequant_mxfp6(
    x: torch.Tensor,
    quant_dtype: str,
    scale_calculation_mode: str = "even",
) -> torch.Tensor:
    try:
        from quark.torch.kernel.hw_emulation.hw_emulation_interface import (
            fake_quantize_fp4_fp6_per_group_with_scale,
        )
        from quark.torch.quantization.utils import even_round, reshape_to_blocks
    except ImportError as err:
        raise ImportError(
            "The package `amd-quark` is required to use "
            "MX-FP6 models. Please install it with `pip install "
            "amd-quark`."
        ) from err
    axis = -1
    block_x = reshape_to_blocks(x, OCP_MX_BLOCK_SIZE, axis)
    amax, _ = torch.max(torch.abs(block_x), dim=-1, keepdim=True)
    amax = amax.squeeze(-1)
    # TODO: there are other rounding strategies supported in quark and in the
    # config.json that we do not check for here!
    if scale_calculation_mode != "even":
        raise NotImplementedError(
            f"Scale calculation mode {scale_calculation_mode} is not yet "
            "supported in MX-FP6 quantization"
        )
    scale = even_round(amax, quant_dtype)
    # Apply dequantize(quantize(x)).
    x = fake_quantize_fp4_fp6_per_group_with_scale(
        x,
        scale.to(x.device),
        axis=axis,
        group_size=OCP_MX_BLOCK_SIZE,
        quant_dtype=quant_dtype,
    )
    return x