Bases: Module
Source code in vllm/model_executor/models/interns1_vit.py
 | 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |  | 
 instance-attribute  ¶
 image_size = (
    image_size
    if isinstance(image_size, Iterable)
    else (image_size, image_size)
)
 instance-attribute  ¶
 position_embeddings = Parameter(
    zeros(1, num_patches + 1, hidden_size)
)
 
  Source code in vllm/model_executor/models/interns1_vit.py
  
  Source code in vllm/model_executor/models/interns1_vit.py
  
  This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution images. This method is also adapted to support torch.jit tracing.
Adapted from: - https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and - https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
Source code in vllm/model_executor/models/interns1_vit.py
  
  Bases: Module
Source code in vllm/model_executor/models/interns1_vit.py
  instance-attribute  ¶
 layer = ModuleList(
    [
        (
            InternS1VisionLayer(
                config,
                quant_config,
                num_dummy_heads=num_dummy_heads,
                prefix=f"{prefix}.layer.{layer_idx}",
            )
        )
        for layer_idx in (range(num_hidden_layers))
    ]
)
 
 __init__(
    config: PretrainedConfig,
    quant_config: QuantizationConfig | None = None,
    *,
    num_hidden_layers_override: int | None = None,
    num_dummy_heads: int = 0,
    prefix: str = "",
)
Source code in vllm/model_executor/models/interns1_vit.py
  
  Bases: Module
Source code in vllm/model_executor/models/interns1_vit.py
  instance-attribute  ¶
 attention = _init_attn(
    config,
    quant_config,
    num_dummy_heads=num_dummy_heads,
    prefix=f"{prefix}.attention",
)
 instance-attribute  ¶
 lambda_1 = Parameter(
    init_values * ones(hidden_size), requires_grad=True
)
 instance-attribute  ¶
 lambda_2 = Parameter(
    init_values * ones(hidden_size), requires_grad=True
)
 instance-attribute  ¶
 layernorm_after = NORM2FN[norm_type](
    hidden_size, eps=layer_norm_eps
)
 instance-attribute  ¶
 layernorm_before = NORM2FN[norm_type](
    hidden_size, eps=layer_norm_eps
)
 instance-attribute  ¶
 mlp = InternS1VisionMLP(
    config,
    quant_config=quant_config,
    prefix=f"{prefix}.mlp",
)
 
 __init__(
    config: PretrainedConfig,
    quant_config: QuantizationConfig | None = None,
    *,
    num_dummy_heads: int = 0,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/interns1_vit.py
  
 _init_attn(
    config: PretrainedConfig,
    quant_config: QuantizationConfig | None,
    *,
    num_dummy_heads: int,
    prefix: str = "",
)
 
  Bases: Module
Source code in vllm/model_executor/models/interns1_vit.py
  instance-attribute  ¶
 fc1 = ColumnParallelLinear(
    hidden_size,
    intermediate_size,
    bias=True,
    quant_config=quant_config,
    prefix=f"{prefix}.fc1",
)
 instance-attribute  ¶
 fc2 = RowParallelLinear(
    intermediate_size,
    hidden_size,
    bias=True,
    quant_config=quant_config,
    prefix=f"{prefix}.fc2",
)
 
 __init__(
    config: PretrainedConfig,
    quant_config: QuantizationConfig | None = None,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/interns1_vit.py
  
  Source code in vllm/model_executor/models/interns1_vit.py
   
  Bases: Module
Source code in vllm/model_executor/models/interns1_vit.py
  instance-attribute  ¶
 encoder = InternS1VisionEncoder(
    config=config,
    num_hidden_layers_override=num_hidden_layers_override,
    num_dummy_heads=num_dummy_heads,
    prefix=f"{prefix}.encoder",
)
 instance-attribute  ¶
   
 __init__(
    config: PretrainedConfig,
    quant_config: QuantizationConfig | None = None,
    *,
    num_hidden_layers_override: int | None = None,
    num_dummy_heads: int = 0,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/interns1_vit.py
  
  Source code in vllm/model_executor/models/interns1_vit.py
  
    
  Source code in vllm/model_executor/models/interns1_vit.py
  
  Bases: Module
Source code in vllm/model_executor/models/interns1_vit.py
  instance-attribute  ¶
 projection = Conv2d(
    num_channels,
    hidden_size,
    kernel_size=patch_size,
    stride=patch_size,
)
 
  Source code in vllm/model_executor/models/interns1_vit.py
  
  Source code in vllm/model_executor/models/interns1_vit.py
  
  Bases: Module
Multi-headed attention from 'Attention Is All You Need' paper
Source code in vllm/model_executor/models/interns1_vit.py
  instance-attribute  ¶
 k_norm = RMSNorm(
    dummy_dim, eps=layer_norm_eps, var_hidden_size=embed_dim
)
 instance-attribute  ¶
 q_norm = RMSNorm(
    dummy_dim, eps=layer_norm_eps, var_hidden_size=embed_dim
)
 
 __init__(
    config: PretrainedConfig, *, num_dummy_heads: int = 0
) -> None
Source code in vllm/model_executor/models/interns1_vit.py
  
  x shape: (B, N, C)