Bases: Qwen2VLForConditionalGeneration, SupportsCrossEncoding, SupportsMultiModal, SupportsScoreTemplate
Source code in vllm/model_executor/models/jina_vl.py
  instance-attribute  ¶
 pooler = DispatchPooler(
    {
        "token_classify": for_token_classify(
            pooler_config, classifier=score
        ),
        "classify": for_classify(
            pooler_config,
            classifier=score,
            act_fn="classify",
        ),
        "score": for_classify(
            pooler_config, classifier=score, act_fn="score"
        ),
    }
)
 class-attribute instance-attribute  ¶
 weight_mapper = WeightsMapper(
    orig_to_new_prefix={
        "score.0.": "score.dense.",
        "score.2.": "score.out_proj.",
        "model.language_model.": "language_model.model.",
        "visual.": "visual.",
        "lm_head.": "language_model.lm_head.",
        "model.": "language_model.model.",
    }
)
 
 __init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/jina_vl.py
  
 forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: IntermediateTensors | None = None,
    inputs_embeds: Tensor | None = None,
    **kwargs: object,
) -> Tensor
Source code in vllm/model_executor/models/jina_vl.py
  classmethod  ¶
    classmethod  ¶
    
    classmethod  ¶
 post_process_tokens(prompt: TokensPrompt) -> None
 
  Bases: Qwen2VLMultiModalProcessor
Source code in vllm/model_executor/models/jina_vl.py
  
 _call_hf_processor(
    prompt: str,
    mm_data: Mapping[str, object],
    mm_kwargs: Mapping[str, object],
    tok_kwargs: Mapping[str, object],
) -> BatchFeature
Source code in vllm/model_executor/models/jina_vl.py
  
  Bases: Module
Source code in vllm/model_executor/models/jina_vl.py
  instance-attribute  ¶
 dense = ColumnParallelLinear(
    hidden_size,
    hidden_size,
    params_dtype=head_dtype,
    bias=True,
)
 instance-attribute  ¶
 out_proj = RowParallelLinear(
    hidden_size,
    num_labels,
    params_dtype=head_dtype,
    bias=True,
)
 
 __init__(model_config: ModelConfig)