@ReasoningParserManager.register_module("step3")
class Step3ReasoningParser(ReasoningParser):
    """
    Reasoning parser for Step3 model.
    The Step3 model uses </think> token to denote the end of reasoning
    text. This parser extracts all content before </think> as reasoning content.
    """
    def __init__(self, tokenizer: PreTrainedTokenizerBase, *args, **kwargs):
        super().__init__(tokenizer, *args, **kwargs)
        self.think_end_token = "</think>"
        self.reasoning_regex = re.compile(rf"(.*?){self.think_end_token}", re.DOTALL)
        if not self.model_tokenizer:
            raise ValueError(
                "The model tokenizer must be passed to the ReasoningParser "
                "constructor during construction."
            )
        self.think_end_token_id = self.vocab.get(self.think_end_token)
        if self.think_end_token_id is None:
            raise RuntimeError(
                "Step3 reasoning parser could not locate think end "
                "token in the tokenizer!"
            )
    def extract_reasoning_content_streaming(
        self,
        previous_text: str,
        current_text: str,
        delta_text: str,
        previous_token_ids: Sequence[int],
        current_token_ids: Sequence[int],
        delta_token_ids: Sequence[int],
    ) -> DeltaMessage | None:
        """
        Extract reasoning content from a delta message.
        Handles streaming output where previous + delta = current.
        Uses token IDs for faster processing.
        For text "abc</think>xyz":
        - 'abc' goes to reasoning_content
        - 'xyz' goes to content
        """
        # Skip single special token
        if len(delta_token_ids) == 1 and delta_token_ids[0] == self.think_end_token_id:
            return None
        if self.think_end_token_id in delta_token_ids:
            # </think> in delta, extract reasoning content and remaining content
            end_index = delta_text.find(self.think_end_token)
            reasoning_content = delta_text[:end_index]
            content = delta_text[end_index + len(self.think_end_token) :]
            return DeltaMessage(
                reasoning_content=reasoning_content,
                content=content if content else None,
            )
        elif self.think_end_token_id in previous_token_ids:
            # </think> already seen in previous text, everything is content
            return DeltaMessage(content=delta_text)
        else:
            # No </think> seen yet, everything is reasoning
            return DeltaMessage(reasoning_content=delta_text)
    def extract_reasoning_content(
        self, model_output: str, request: ChatCompletionRequest
    ) -> tuple[str | None, str | None]:
        # Check if the model output contains the </think> token
        if self.think_end_token not in model_output:
            # If no </think> token, everything is reasoning content
            return model_output, None
        else:
            # Find the first occurrence of </think>
            end_index = model_output.find(self.think_end_token)
            reasoning_content = model_output[:end_index]
            # Content after </think> token
            content = model_output[end_index + len(self.think_end_token) :]
            if len(content) == 0:
                content = None
            return reasoning_content, content
    def is_reasoning_end(self, input_ids: list[int]) -> bool:
        return self.think_end_token_id in input_ids
    def extract_content_ids(self, input_ids: list[int]) -> list[int]:
        if self.think_end_token_id not in input_ids[:-1]:
            return []
        else:
            return input_ids[input_ids.index(self.think_end_token_id) + 1 :]