class Olmo3Config(PretrainedConfig):
    model_type = "olmo3"
    keys_to_ignore_at_inference = ["past_key_values"]
    def __init__(
        self,
        vocab_size=50304,
        hidden_size=4096,
        intermediate_size=11008,
        num_hidden_layers=32,
        num_attention_heads=32,
        num_key_value_heads=None,
        hidden_act="silu",
        max_position_embeddings=2048,
        initializer_range=0.02,
        use_cache=True,
        pad_token_id=1,
        bos_token_id=None,
        eos_token_id=50279,
        tie_word_embeddings=False,
        rope_theta=10000.0,
        rope_scaling=None,
        attention_bias=False,
        attention_dropout=0.0,
        rms_norm_eps=1e-5,
        sliding_window=4096,
        layer_types=None,
        **kwargs,
    ):
        # This model uses Olmo3ForCausalLM in transformers but Olmo2ForCausalLM
        # in vLLM.
        if "architectures" not in kwargs:
            kwargs["architectures"] = ["Olmo2ForCausalLM"]
        elif "Olmo3ForCausalLM" in kwargs["architectures"]:
            kwargs["architectures"].remove("Olmo3ForCausalLM")
            kwargs["architectures"].append("Olmo2ForCausalLM")
        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        # for backward compatibility
        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads
        self.num_key_value_heads = num_key_value_heads
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.rope_scaling = rope_scaling
        self.attention_bias = attention_bias
        self.attention_dropout = attention_dropout
        self.rms_norm_eps = rms_norm_eps
        self.sliding_window = sliding_window
        self.layer_types = layer_types
        if self.layer_types is None:
            self.layer_types = [
                "sliding_attention" if (i + 1) % 4 != 0 else "full_attention"
                for i in range(self.num_hidden_layers)
            ]