Medusa proposer class for generating token sequences
  Source code in vllm/v1/spec_decode/medusa.py
 |  | class MedusaProposer:
    """
    Medusa proposer class for generating token sequences
    """
    def __init__(
        self,
        vllm_config: VllmConfig,
        device: torch.device,
    ):
        # Save config parameters
        self.vllm_config = vllm_config
        self.device = device
        self.max_num_tokens = vllm_config.scheduler_config.max_num_batched_tokens
        self.hidden_size = (
            vllm_config.speculative_config.draft_model_config.get_hidden_size()
        )
        self.dtype = vllm_config.model_config.dtype
    def propose(
        self,
        target_hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> list[list[int]]:
        # Generate blocks and compute logits
        blocks = self.model(target_hidden_states)
        logits = self.model.compute_logits(blocks)
        # Get draft tokens and transpose the result
        # TODO(woosuk): OPTIMIZATION: Return GPU tensor without GPU-CPU
        # synchronization.
        draft_tokens = [logit.argmax(dim=-1).tolist() for logit in logits]
        return [list(row) for row in zip(*draft_tokens)]
    def load_model(self, target_model: nn.Module) -> None:
        from vllm.compilation.backends import set_model_tag
        with set_model_tag("medusa_head"):
            self.model = get_model(
                vllm_config=self.vllm_config,
                model_config=self.vllm_config.speculative_config.draft_model_config,
            )
    @torch.inference_mode()
    def dummy_run(self, num_tokens: int) -> None:
        hidden_states = torch.zeros(
            (self.max_num_tokens, self.hidden_size),
            dtype=self.dtype,
            device=self.device,
        )
        with set_forward_context(None, self.vllm_config, num_tokens=num_tokens):
            self.model(hidden_states)
 | 
     instance-attribute  
   
      instance-attribute  
 hidden_size = get_hidden_size()
 
     instance-attribute  
 max_num_tokens = max_num_batched_tokens
 
     instance-attribute  
 vllm_config = vllm_config
 
     
    Source code in vllm/v1/spec_decode/medusa.py
 |  | def __init__(
    self,
    vllm_config: VllmConfig,
    device: torch.device,
):
    # Save config parameters
    self.vllm_config = vllm_config
    self.device = device
    self.max_num_tokens = vllm_config.scheduler_config.max_num_batched_tokens
    self.hidden_size = (
        vllm_config.speculative_config.draft_model_config.get_hidden_size()
    )
    self.dtype = vllm_config.model_config.dtype
 | 
        
 dummy_run(num_tokens: int) -> None
  Source code in vllm/v1/spec_decode/medusa.py
 |  | @torch.inference_mode()
def dummy_run(self, num_tokens: int) -> None:
    hidden_states = torch.zeros(
        (self.max_num_tokens, self.hidden_size),
        dtype=self.dtype,
        device=self.device,
    )
    with set_forward_context(None, self.vllm_config, num_tokens=num_tokens):
        self.model(hidden_states)
 | 
        
 load_model(target_model: Module) -> None
  Source code in vllm/v1/spec_decode/medusa.py
 |  | def load_model(self, target_model: nn.Module) -> None:
    from vllm.compilation.backends import set_model_tag
    with set_model_tag("medusa_head"):
        self.model = get_model(
            vllm_config=self.vllm_config,
            model_config=self.vllm_config.speculative_config.draft_model_config,
        )
 | 
        
    Source code in vllm/v1/spec_decode/medusa.py
 |  | def propose(
    self,
    target_hidden_states: torch.Tensor,
    sampling_metadata: SamplingMetadata,
) -> list[list[int]]:
    # Generate blocks and compute logits
    blocks = self.model(target_hidden_states)
    logits = self.model.compute_logits(blocks)
    # Get draft tokens and transpose the result
    # TODO(woosuk): OPTIMIZATION: Return GPU tensor without GPU-CPU
    # synchronization.
    draft_tokens = [logit.argmax(dim=-1).tolist() for logit in logits]
    return [list(row) for row in zip(*draft_tokens)]
 |